National Centre for Radio Astrophysics

Internal Technical Report GMRT/SERVO/002 - June 2013

S01 BLDC System Commissioning: Site Acceptance Report

S.J. Bachal,Abhishek Pawar,Amit Kumar,Suresh Sabhapathy, Dr. B. C. Joshi

Revision	Date	Modification/ Change
Ver. 7	31 July 2013	For circulation

Executive Summary

S01 is the fifth antenna in series of BLDC system installation in GMRT after C04, C10, C14 and C00.To validate the installation various tests were conducted before and after removing the old BLDC system. These tests were arrived at after much deliberation in servo group. This report presents the findings of the tests in different parts. The results show that there is no significant change in the servo performance of the antenna before and after the installation of BLDC Transformer voltage levels are within 10% tolerance of expected values indicating healthy load behavior. DC Power Supply currents are normal indicating healthy operation of internal components of both control rack and BLDC System. Limit switch operation were checked and their positions were noted and found to be same as before. Windmeter reading were also checked and both windmeters are operating. Rotation tests conducted show that the speeds of the motors are as per requirements. For an input of 10 V to Azimuth axis the speeds of the motor should be around 1600 rpm while for Elevation axis the speeds should be close to 1400 rpm which is visible from the readings. Study of the Velocity loop step responses show that there is lesser overshoot in the BLDC response when compared to PMDC but the settling band is wider in BLDC when compared to PMDC. The Position Loop responses have been included as position loop supersedes velocity loop and determines the overall behavior of GMRT servo system. Position Loop parameters such as rise time, peak overshoot have been calculated and show adherence to requirements of BLDC. The plots of the tracking profiles show a close adherence of antenna response to the targets given by $A B C$ with rms tracking errors close to 5 arc sec which is very much within the servo requirements of GMRT.The RFI report conducted and circulated by the RFI Group states that the BLDC system complies to the RFI requirements of the GMRT antennas vindicating the extra effort taken to make BLDC system compatible to the requirements of GMRT.

Index

1. Velocity Loop Step Response
2. LRF Plots
3. Position Loop Response
4. Tracking Plots
5. RFI Test Report
6. Operational Tests

1. Velocity Loop Step Response:

This test is performed by giving step voltage from a dc power supply to the speed loop which is housed in Delta Tau PMAC in BLDC system and counter torque card in PMDC.

The motor responses are recorded using PMAC PLOT Pro in BLDC and LABVIEW in PMDC.

Produced below are the Step Responses of the speed loop of BLDC and PMDC.
1.1 Conclusions: The step response parameters have been calculated for the position loop response only as this loop supersedes the speed loop.

BLDC

Step Response - Az

Step Response: EL

PMDC

2. LRF (Locked rotor frequency tests)

Lrf test is conducted by introducing a sine - sweep waveform into the input of the speed loop and the motor response are recorded.
It is a very important tool for study of frequency domain stability of antenna.

Tabulation of the results:

	Azimuth	Elevation
PMDC	1.1 Hz	1.25 Hz
BLDC	1.1 Hz	1.3 Hz

2.1 Conclusions: From the results it can be inferred that there is no significant change in the LRF before and after BLDC installation.
Produced below are the plots.

Above: LRF of PMDC

Above: LRF of BLDC

3. Position Loop Step Response:

These tests are conducted by giving step command of one degree and ten degree to the position loop and recording the encoder reading for the response. This can be done either with NEWSMU at the antenna base or from the control room.

These tests are the most important time domain study of the servo system. Since the position loop is the outermost loop, the response determines the stability of the overall system.

3.1 Conclusions:

Since the position loop study was included for the first time there is no comparative study with the PMDC.
Produced below are the step response plots.
The various parameters for the step responses have been calculated and tabulated.
A comparative study will follow in subsequent reports.

Above plots are step responses for Ten degree step. Below are for One Degree step.

One Degree Step Response Analysis:

	Azimuth	Elevation
Overshoot (\%)	10.11	14.5
Rise Time (sec)	2.88	2.16
Peak Time (sec)	11.851	12.027
Settling Time (sec)	18	18.36

4. Tracking Plots:

This test involves moving the antenna in different velocity tracking profiles and recording the target position issued by ABC and the encoder position achieved.
Next step is plotting of the above two variables is done with respect to the time.

Plotted below are the tracking plots for various tracking profiles (5arcminpermin to 150arcminpermin)

The overlapping of encoder position and the target position and the linear slope shows that the tracking is smooth without much error.

Also tracking error vs no. of samples plot has been included.

4.1 Conclusion:

The overlapping of encoder position and the target position and the linear slope shows that the tracking is smooth without much error.

The errors obtained have been tabulated and are close to 5 arcsecs which is well within GMRT requirements.

AZ Tracking 5arcmin per min

AZ 15 arcmin per min

EL Tracking 5arcmin per min

EL Tracking 15arcmin per min

Azimuth 90arcmin per min

Azimuth 150 arcmin per min

RMS Error:

AZ:5.2 arcsecs

EL : 4.88 arcsecs

5. RFI Test Report:

Reproduced below is the test report circulated by the RFI group.
5.1 Verdict: BLDC system has not created any RFI.

S-01 BLDC Servo System RFI Measurement Report

By :- SSK, PAR, SBB.

Following are the test result of RFI measurement done for BLDC System (before and after installation) at S-01 antenna.

Test Procedure:

1. Measurement done at 20 meter distance apart from S-01 antenna base with Rx LPDA antenna.
2. Log periodic antenna with 20 dB amplifier used as receiver.
3. We observed RFI in $0-500 \mathrm{MHz}, 500-1000 \mathrm{MHz}$ and $1000-2000 \mathrm{MHz}$ frequency band for BLDC System from East, South, West and North direction.

Measurement Result :-

Before BLDC system Installation (old servo system)

Fig.1: Above figure shows after Power OFF all system. (Measurement taken at $8^{\text {th }}$ Dec., 2012).

Fig.2: Above figure shows after Power ON only servo system. (Measurement taken at $8^{\text {th }}$ Dec., 2012).

Fig.3: Above figure shows after Power OFF all system. (Measurement taken at 25 ${ }^{\text {th }}$ Jan., 2013).

Fig.4: Above figure shows after Power ON only servo BLDC system. (Measurement taken at 25 ${ }^{\text {th }}$ Jan., 2013).

Conculsion :- There is no Radio Frequency Interference seen due to the BLDC System at S-01 antenna.
operational tests report
ANTENNA: S01
Cold Testing

Created By-Shailendra J.Bachal

