OPERATING PROCEDURE FOR

RUNNING GWB - release

<u>Authors :</u> Nilesh Raskar Harshavardhan Reddy

Table of Contents

Available modes in GWB	5
Chapter 1: GWB Parameters	6
1.1 Available GWB config parameter selections and resultant values	6
Chapter 2: Configuring and Running GWB	8
2.1 Configuring GWB	8
2.2 Starting acquisition and recording	10
2.3 GAB Power Equalise	12
Steps to follow (with GUI)	13
2.4 Running Phasing on GWB data :	13
2.5 GAC selection:	14
2.6 Starting Pulsar Acquisition GUI :	14
2.7 Multi-sub-array observations:	16
2.8 TPA selection:	16
Chapter 3: Troubleshooting	17
Some Quick Checks	17
IMPORTANT Notes	17
Antenna connections to GWB Roach boards	17
Appendix - 1 BEAM INTEGRATION TABLE – for 200MHz 8-bit mode	19
Appendix - 2 BEAM INTEGRATION TABLE – for 400MHz 4-bit mode	21
Appendix - 3 BEAM INTEGRATION TABLE – for 100MHz 8-bit mode	23
Appendix – 4 IO budget, cost of Visibility IO and beam IO	25
Appendix – 5 Narrowband mode	35
Appendix – 6 Output data rates	36
Appendix - 7 POWER ON/OFF PROCEDURE	40
1. Switch OFF procedure	40
2. Switch ON procedure	41
Appendix – 8 GWB NETWORK DIAGRAM	42

Illustration Index

Illustration 1: GWB configuration parameters to save gpu.hdr file. An example7
Illustration 2: GWB configuration window with warning message showing the entered
configuration does not run in real-time9
Illustration 3: GWB data acquisition window12
Illustration 4: GWB-GAB power Equalise Window12
Illustration 5: Phasing widget to run and apply phasing iteration on GWB13
Illustration 6: GAC showing antennas selected (marked in Red) for Beam data acquisition14
Illustration 7: Pulsar Data acquisition Interface (Pulsar DAS)15
Illustration 8: Online TPA selection – In this case No need to enter the values at GUI. ACQ
straightaway reads the TPA parameters given at ONLINE for relevant sub-array. Irresepctive of the
values of GAB RF/LO, GTAC CODE, SideBand FLAG etc. Here, user needs to confirm that TPA
parameters and Frequency settings done at GAB, GWB are matching. If not then it may result in
bad data16
Illustration 9: Manual TPA selection – for this user has to provide the PRJCODE entered at online
for given particular sub-array, so that the GAB RF/LO Frequency entered at GUI for relevant sub-
array will be taken calculation of TPA, along with selected SideBand FLAG. Otherwise, ACQ will
consider the TPA values given at the ONLINE, which may be wrong considering the values set at
GAB16

Available modes in GWB

Input Bandwidth = 200/400MHz

No. of spectral channels = 2048/4096/8192/16384

Output time resolution = 0.671 / 1.34 / 2.68 / 5.36 / 10.73 / 21.4 seconds

No. of beams = 4

Interferometry modes = Total Intensity/Full Polar

Beamformer modes = IA/PA/Voltage

Narrowband mode possible BW = 100/50/25/12.5/6.25/3.125/1.5625 MHz

Note : 1. Voltage beam mode is possible only in Total Intensity mode of Interferormeter. 2. PA beam full polar mode is available only in Full Polar mode of Interferometer.

Note :Packet loss information is saved at the end of every observation at /home/gpuuser/GWB/log/loss_log.txt in gwbh6 machine along with timestamp. Example : loss_log_2018_03_26_12_10_AM.txt

Chapter 1: GWB Parameters

1.1 Available GWB config parameter selections and resultant values

GWB Parameter	GUI Selection	Resultants in hdr file				
MODE	REALTIME	0				
LTA (for 200MHz/8-bit and	32	0.671088 * 32 = 21.474816 sec				
400MHz/4-bit modes)	16	0.671088 * 16 = 10.737408 sec				
	8	0.671088 * 8 = 5.368704 sec				
	4	0.671088 * 4 = 2.684352 sec				
	2	0.671088 * 2 = 1.342176 sec				
	1	0.671088 sec				
LTA(for 100MHz	32	1.342176 * 32 = 42.949632				
Narrowband mode)	16	1.342176 * 16 = 21.474816 sec				
	8	1.342176 * 8 = 10.737408 sec				
	4	1.342176 * 4 = 5.368704 sec				
	2	1.342176 * 2 = 2.684352 sec				
	1	1.342176 sec				
ACQ BW	400 MHz	400.0000				
	200 MHz	200.0000				
	100 MHz	100.0000				
DDC (see chapter 2.1.4)	0	Narrowbandmode OFF				
	1	Narrowbandmode ON				
Final BW (Decimation Factor)	1	100MHz Final BW				
	2	50 MHz				
	4	25 MHz				
	8	12.5 MHz				
	16	6.25 MHz				
	32	3.125 MHz				
	64	1.5625 MHz				
CHANNELS	512	512				
	1024	1024				
	2048	2048				
	4096	4096				
	8192	8192				
	16384	16384				
STOKES	2 STOKES	2 (Total Intensity mode)				
	4 STOKES	4 (Full polar mode)				
CONTROL	ONLINE	1				

TPA SELECTION	Online (tpa)	1
	Manual (GWB)	0
SIDEBAND FLAG	Flipped (LSB)	1
	Normal (USB)	-1
GAB LO FREQUENCY	LO 130 & LO 175	LO SET at GAB taken as RF for GWB.
GAIN	ON/OFF	1/0 respectively.
FSTOP	ON/OFF	1/0 respectively.
Beam – 1 / Beam – 2 / Beam – 3 / Beam - 4	OFF/IA/PA/Voltage	0/1/2/3 respectively
Beam Stokes	1 Stokes/ 4 Stokes.	1/4 respectively
Beam Integration	A range of values	Appendix 1 and Appendix 2
BITS	8	8 (for ACQ BW <= 200 MHz)
	4	4 (for ACQ BW > 200 MHz)
Beam Steering	OFF/ON	Edit file beam_str_src.list in gwbh6:/home/gpuuser/GWB/release/header for pointing beam2,beam3 and beam4 away from reference beam1

Preferred Se	ettings										
GWB Configuration	Voltage-CD mo	ode set	tings SAMPLERs	Settings							
LTA :	4	•	GAB RF Frequenc	y (MHz) :							h
ACQ BW (MHz) :	100.0000	•	GTAC	CODE POL 1	POL 2	DDC LO1	DDC LO2	SideBar	nd1 Sid	deBand2	
CHANNELS :	2048	-	Subar 1 : SUBA1	1460	1460	0.0000	0.0000	LSB	- L	LSB 🔻	
STOKES :	Total Intensity	-	Subar 2 : 32_032	2B 500	500	0.0000	0.0000	LSB	• I	LSB 🔻	
TPA selection :	Manual (GWB)	-	Subar 3 : 32_032	2C 850	850	0.0000	0.0000	LSB	• L	LSB 🔻	
DDC :	ON	-	Subar 4 : TEST	700	700	0.0000	0.0000	LSB	• [I	LSB 🔻	
Decimation Value :	1.0	-	Subar 5 : SUBA5	0	0	0.0000	0.0000	LSB	-	LSB 🔻	
RFI Filtering :	OFF	•		- HOST	Machines						
Beam Integration :	128				ONLINE :	shivneri •	GW	B IFR :	gwbh6	-	
Beam Steering :	OFF	-		Bea	m1 Host :	gwbh7	Beam2	Host :	gwbh8	-	
BEAM 1 / Stokes :	IA 🔻	1 🔻		Bea	Hosts ma	chine confi	guration Beam4	Host :	- gwbh1	0 +	
BEAM 2 / Stokes :	PA 🔻	1 🔻						in the second			
BEAM 3 / Stokes :	IA 🔻	1 🔻	The chosen conf	iguration is po	ossible, and	it's Expect	ted to run s	moothly			
BEAM 4 / Stokes :	PA 🔻	1 🖣									
				DEFAULT	LOAD	S/	AVE	QUIT	•		

Illustration 1: GWB configuration parameters to save gpu.hdr file. An example.

Chapter 2: Configuring and Running GWB

2.1 Configuring GWB

Log on to **<u>observer@astro8</u>** and enter commands as:

cd ~/bin/gwb-release/

./gwbcorr

This will open a qt interface for gwb release (gwb-dasconsole).

Go to $Edit \rightarrow Preferences$ (Ctrl + P) to pop up the settings window (see Illustration 1). The first tab in the window is GWB configuration window. The options in the window are described below :

LTA	:	Visibility data output time resolution
ACQ BW(MHz)	:	Acquisition BW 400/200/100 MHz
CHANNELS	:	No. of spectral channels
STOKES	:	Mode of interferometer. Total Intensity (2 Stokes) or Full Polar (4 stokes)
TPA selection	:	 Online (TPA) : This will take TPA parameters from online machine, and disables the Sideband Flag and GAB LO entries at GUI, for each relevant sub- array Manual (GWB) : This enables user to choose sideband, and GAB LO Entries.
DDC	:	Narrowband mode ON/OFF
Decimation value	e:	BW selection in Narrowband mode 1 - 100MHz, 2 - 50MHz, 4 - 25MHz, 8 - 12.5MHz, 16 - 6.25MHz, 32 - 3.125MHz, 64 - 1.5625MHz
RFI Filtering	:	<pre>RFI Filtering selection. OFF - No RFI Filtering, ON(MAD) - Median of Absolute Deviation based RFI Filtering ON(MOM) - Median of MAD based RFI Filtering</pre>
BEAM 1/STOKES BEAM 2/STOKES BEAM 3/STOKES BEAM 4/STOKES	:	Beam type selection and Beam Stokes selections
BEAM STEERING	:	Beam Steering OFF/ON

In the same window, enter the GTAC code and RF settings for each sub-array. Sideband flags for each pol depends on the GAB LO and RF band of observation. LSB if RF < GAB LO and USB if RF > GAB LO.

After entering the configuration, press SAVE button at the bottom. On pressing SAVE, a message(highlighted in GREEN color) appears (see Illustration 1) whether the given configuration runs in real-time or not. If not, a warning message(highlighted in RED color) appears, that the given configuration does not run in real-time. Whether the configuration runs in real-time or not, depends on the total amount of IO required for the given configuration and IO budget. For details regarding IO budget and cost of IO for each setting (Interferometer and Beamformer), see **Appendix 3**.

WB Configuration	Vol	tage-C	D m	ode	set	tings SA	MPLERs Settir	ngs							
LTA :	4				•	GAB RF F	requency (MH:	z): ——							
ACQ BW (MHz) :	400.0000				•		GTAC CODE	POL 1	POL 2	DDC LO1	DDC LO2	SideBa	nd1 Si	deBand	2
CHANNELS :	16384	ł.			•	Subar 1 :	SUBA1	1460	1460	11.0000 ·	0.0001	LSB	-	LSB 🔻	
STOKES :	Full St	okes			-	Subar 2 :	32_032B	500	500	(prodeo)	0.0000	LSB	- (LSB 🔫	
TPA selection :	Manu	80	G۷	νв (Ver	4.5) CORR	ELATOR					LSB		LSB 🔻	
DDC :	OFF Warning: Currently selected options for GWB configuration is NOT possible.														
Decimation Value :	1.0 This program can't function correctly with selected settings. 1.0 Please reconfigure the GUI settings.								- (LSB 🝷					
RFI Filtering :	OFF														
Beam Integration :	8						Retry	Quit	J			IFR :	awbhe	5 🗸	
Beam Steering :	OFF				•	_	_	Bear	n1 Host ·	awbh7	Beam2	Host	awbh8	3 -	
BEAM 1 / Stokes :	IA		-	1	•			Bear	n3 Host	awbh9	Beam	Host ·	awbh1		
BEAM 2 / Stokes :	IA		-	1	•			bear	no nost .	gnons	beams	most.	90011		
BEAM 3 / Stokes :	Volta	age -	-	1	•	The cho	son configurat	ion is "N	OT" possik	le and it e	av fail to	nun in re	altime		
	DA			1	-	The chosen configuration is "NOT" possible, and it may fail to run in realtime.									

Illustration 2: GWB configuration window with warning message showing the entered configuration does not run in real-time

In case of **narrowband mode**, set DDC parameter ON and enter the decimation value depending on the BW required. Enter the values of DDC LO1 (pol 1) and DDC LO2 (pol 2). DDC LO value is the starting frequency of the narrowband. For example, if decimation is 4 and DDC LO is 50MHz, then the signal that can be seen is from 50MHz and 75MHz of the actual 100MHz BW baseband signal.

Note : 1. Decimation is same for all the subarrays. There is no option for subarray specific decimation value.

2. DDC LO can be different for subarrays. Also, DDC LO can be different for each polarization.

The possible decimation values, no. of taps used for filtering, actual BW and usable BW along with spectral channels and spectral resolution values given in **Appendix 4**.

2.2 Starting acquisition and recording

- 1. Go to the gwb-dasconsole
- On Menubar go to "Start -> Open All Windows" or "Ctrl+O" or go to "Start -> GWB -Windows -> Sockcmd " to open all client processes to run gwb with sockcmd and online dassrv processes, or "Start -> GWB - Windows -> Getcmd " to run gwb without sockcmd and dassrv processes.

This will popup the client workspaces for each command with following order:

"192.168.4.75::gwb_corr_released.sh":

It can also be termed as acquisition client. This starts and broadcasts the acquisition processes to the compute nodes and host machines.

"192.168.4.75::sockcmd.sh": (can be started only when GWB running with sockcmd mode)

This sets up the communication between online and correlator and gives acknowledgments to the commands from the correlator to the online and vice versa.

➤ "192.168.4.75::collect.sh":

This dumps the Astronomical data into the buffer and keeps it there for a while and removes it as per the FIFO logic.

▶ "192.168.4.75::record":

one can write the acquired data into specified lta format file as per requirement.

3. Now, click the **start button** (blue icon button) of first client window named "gwb_corr_released.sh" and wait till it shows the following message:

gmrt_correlator : Waiting For Initialization Cmd ..

4. Start sockcmd.sh, collect.sh, and dass-srv (from online machine) for gwb.

ssh -X <u>observer@shivneri</u> cd /odisk/online1/gsbe/dassrv-gpu/ ./dassrv_released

This is also aliased as **gwbdassrv** on online machine (shivneri). In Case, if you are running GWB, in **"getcmd"** mode, then there is no need to start both sockcmd.sh and dassrv-gpu processes, user just have to start the process "collect" only.

- 5. Now click the start button (blue icon button) of "collect.sh" wondow
- 6. Enter initndas command from online user0.

allant;cmode 1;tpa(11)=15;initndas'/temp2/data/gsb.hdr' **(GWB ONLY). allant;cmode 9;tpa(11)=15;initndas'/temp2/data/gsb.hdr' **(GSB + GWB).

For getcmd mode :

On the online machine terminal, enter command

gwbcmd-gwb4 initndas

gwbcmd-gwb4 is the modified getcmd program, specially designed for acquiring

data for multi-sub-array observations.

After this command wait(nearly 15 to 20 seconds) for following messages in the first window.

Full Polar mode : "collecting data for full polar mode collecting data for full polar mode" Total Intensity mode : "collecting data for indian polar mode collecting data for indian polar mode"

If beamformer is selected, timestamps information will be printed in between the above given messages.

7. Enter the command for initializing the Project for given subarray. allant;subar 4; prjtit ''; prjobs ''; initprj(15,'TEST'); **(GWB ONLY). allant;subar 4; prjtit ''; prjobs ''; initprj(15,'TEST'); **(GSB + GWB).

For getcmd mode :

On the online machine terminal, enter command gwbcmd-gwb4 initprj x (where x is subar # = 2,3,4,5 etc. or

```
gwbcmd-gwb4 initprj ** This takes default subarray as subar 4
```

8. Start and stop scan as per requirement and one can start record for the same.

To record the data in record window type in the format as :

GWBTST /gwbifrdata2/31mar/gwbtst_31mar2017.lta

GWBTST /gwbifrdata2/31mar/gwbtst_31mar2017.lta 4

For GWB with Sockcmd mode default commands strtndas and stpndas from online user / subar controller (command file) can be used.

```
Recording (start and stop scans) using getcmd :

gwbcmd-gwb4 strtndas ;for subar 4.

gwbcmd-gwb4 stpndas

gwbcmd-gwb4 strtndas <subar number> ;for multi-sub-array observation.

gwbcmd-gwb4 stpndas <subar number>
```

9. Starting **DASMON** :

login to gwbh6 : **ssh -X gpuuser@gwbh6** enter commands as : /**home/gpuuser/GWB/release/bin/dasmon.pl**

Also, DasMon Can be Started from the main DasConsole GUI from

"MenuBar->Tools->Interferometry->GWB DasMon" or CTRL + M as an accelerator.

10. Starting Power Equalisation Program :

GWB Power Equalise GUI Can be Started from the main DasConsole GUI from "**MenuBar->Tools->Interferometry->GWB_PowerEq" or CTRL** + E as an accelerator. This can also be done as explained in later section(2.3) 'GAB - GWB Power Equalise'.

Illustration 3: GWB data acquisition window

2.3 GAB Power Equalise

Illustration 4: GWB-GAB power Equalise Window

Power Equalise program is released for GWB, which uses the output self visibility data from GWB and equalizes the power levels at GAB (GMRT Analog Backend) system.

Steps to follow (with GUI)

GWB Power Equalise GUI Can be Started from the main DasConsole GUI from **"MenuBar->Tools->GWB_PowerEq" or CTRL** + E as an accelerator (as explained earlier in GWB-CORRELATOR).

Also, The same can be started manually as follows:

- 1. Select the antennas connected to the GAB and GWB.
- 2. Initially make all GAB attenuation's same for both the polarization's, as set in the cdsetX file, or change Attenuation's to MAXIMUM, by clicking on button 'MAX Attn', apply it to GAB accordingly.
- 3. Set the Optimum level, Begining channel, End channel, Upper level, Lower level and Integrations as per requirement.
- 4. Click on the button save to generate text files as per selected gui options.
- 5. Click the button 'EQUALISE' to start first iteration.
- 6. Run the process 'run gwblev' from userX window from online(2-3 times).
- 7. Repeat steps 5 and 6 till optimum level is attained.

2.4 Running Phasing on GWB data :

This can be invoked from GWB-CORRELATOR Main Window from "**Tools** -> **Pulsar Tools** -> **GWB Phasing**", or pressing **Alt**+**P** as an accelerator.

	Multi-Sub	array-PHA	SING WIN	DOW	
SUB-ARRAY -	🔘 Sub 1	🔘 Sub 2	🔘 Sub 3	Sub 4	🔘 Sub 5
Project Code -	0010001			TEST	(Internet)
Reference ANTENNA : (From	C00	- C00	- C00 -	- C00	- C00
<u>Sub-array)</u>				30	
Data Recording TIME : (in Seconds)					
WideBand Phasing					
	and the second second				

Illustration 5: Phasing widget to run and apply phasing iteration on GWB.

This utility temporarily provided with small tool which calls the phase_gwb.pl from online machine. Phasing Widget allows to choose the following :

- Reference Antenna Name for selected sub-array.
- **Sub-array** Number for which to carry phasing iteration.
- **Data recording Time** on which Phasing will work for the solutions.
- **Project Code** to be entered for related subarray which is used.

<u>Note</u> : Antenna selection Button is provided, but code for Antsel is not yet ready.

2.5 GAC selection:

GAC (GMRT Array Combiner) is the tool to configure the set of antennas into possible Beam configurations. In some way, this can be done as per the requirement of the user. This allows user to select and deselect the antennas for particular beam configuration.

Illustration 6: GAC showing antennas selected (marked in Red) for Beam data acquisition.

2.6 Starting Pulsar Acquisition GUI :

- 1. This can be invoked from GWB-CORRELATOR Main Window from "**Tools** -> **Pulsar Tools** -> **Pulsar DasConsole**", or pressing **Alt+B** as an accelerator.
- 2. On Menubar go to "**Start** -> **All Windows**" or "**Ctrl**+**N**" or go to "**Start** -> **BEAM1 Windows** -> **All** " to open all client processes to run gwb pulsar mode processes on gwbh7.

This will popup the client processing windows for Beam 1 host machine (set from the Preferences of the Main DasConsole GUI), in the following order :

- "gwbh7::bm1_process_psr": It can also be termed as incoherent array pulsar data acquisition and processing client.
- "gwbh7::collect_psr": This dumps the incoherent array pulsar data into the Shared memory.
- 3. "gwbh7::bm1_record_psr": one can write the acquired incoherent pulsar data into specified .raw format file as per requirement.
- 3. Start the clients processes, **bm1_process_psr** and **collect_psr** by pressing Blue (start) button on the Client windows.
- 4. On the ToolBar There are Four Different Buttons viz., InitBm1, StartBm1, StopBm1, FinishBm1, etc.
- On Menubar go to "Start -> All Windows" or "Ctrl+N" or go to "Start -> BEAM2 -Windows -> All " to open all client processes to run gwb coherent array pulsar mode processes on gwbh8(gwbh8).

In similar way, each beam client processes can be started.

6. In addition to this, there are Buttons to control data for pulsar beams which are named by InitAll, StartAll, StopAll, FinishAll. These four buttons will control the process simultaneously, If user is working with the all Beams data.

- 1. InitBm1/InitBm2/InitBm3/InitBm4/InitBoth : Initializes the beam Process Pulsar Beam Acquistion.
- 2. StartBm1/StartBm2/StartBm3/StartBm4/StartBoth : Starts the pulsar DATA acquisition for beam collect pulsar.
- 3. StopBm1/StopBm2/StopBm3/StopBm4/StopBoth : Stops the pulsar DATA acquisition for beam collect pulsar.
- 4. FinishBm1/FinishBm2/FinishBm3/FinishBm4/FinishBoth : Halts the beam Processes Pulsar Beam acquisition.

The Pulsar DAS Console GWB (RELEASE Style, Hole		
ait siyle <u>H</u> elp		
itali Statali Statali Sinjakali	nitomz startomz stopomz rinishomz - initoms st	
nitali Startali Stopali Finisnali	Client - awhk7 - fromo/anuscar/CWP/ralesco/hin/	call IV Client is awho? is from a from a construction of the const
ment gwont /norne/gpouser/owb/rerease/on/or	Chent gwbh/ /home/gpuuser/owb/release/on/	
nnecting to the server :: gwbh7	Connecting to the server :: gwbh7	
ccessfully connected.	Successfully connected.	Connecting to the server :: gybh7
		Successfully connected
Plant and b 0 from June octure 1 and 1		all and climber which a drawn for unserticular statistics
Client :: gwon8 :: /nome/gpuuser/GWB/release/oin/oi	Client :: gwon8 :: /nome/gpuuser/GWB/release/oin/	colin Client :: gwon8 :: /nome/gpuuser/GWB/release/oin/be Client :: gwon8 :: /nome/gpuuser/GWB/release/oin/be Client :: gwon8 :: /nome/gpuuser/GWB/release/oin/be
nnecting to the server :: gwbh8	Connecting to the server :: gwbh8	
cressfully connected	Successfully connected	Connecting to the server :: gubb8
ccessfully connected.	Successfully connected.	connecting to the server is gnote
		Successfully connected.
Client :: gwbh9 :: /home/gpuuser/GWB/release/bin/b	e 🗆 🗶 Client :: gwbh9 :: /home/gpuuser/GWB/release/bin/	coll 🗆 🗙 Client :: gwbh9 :: /home/gpuuser/GWB/release/bin/be 🗖 🗙
	Θ	
nnecting to the server :: gwbh9	Connecting to the server :: gwbh9	
ccessfully connected.	Successfully connected.	Connecting to the server :: gwbh9
		Successfully connected.
Client :: gwbh10 :: /home/gpuuser/GWB/release/bin/l	o 🖬 🗖 🗶 Client :: gwbh10 :: /home/gpuuser/GWB/release/bir	/co. 💶 🗙 Client :: gwbh10 :: /home/gpuuser/GWB/release/bin/b 💶 🗙
90		 Image: A start of the start of
nnecting to the server :: gwbh10	Connecting to the server :: gwbh10	
ccessfully connected.	Successfully connected.	Connecting to the server :: gwbh10
		Successfully connected.

Illustration 7: Pulsar Data acquisition Interface (Pulsar DAS).

2.7 Multi-sub-array observations:

For this user has to split up the working antennas into two or more sub-arrays as per their requirement, and start the individual PROJECT from the ONLINE, for each of the sub-array. This works with both ONLINE and MANUAL TPA selection explained in section 3.6.

Illustration 8: Online TPA selection – In this case No need to enter the values at GUI. ACQ straightaway reads the TPA parameters given at ONLINE for relevant sub-array. Irresepctive of the values of GAB RF/LO, GTAC CODE, SideBand FLAG etc. Here, user needs to confirm that TPA parameters and Frequency settings done at GAB, GWB are matching. If not then it may result in bad data.

Illustration 9: Manual TPA selection – for this user has to provide the PRJCODE entered at online for given particular sub-array, so that the GAB RF/LO Frequency entered at GUI for relevant sub-array will be taken calculation of TPA, along with selected SideBand FLAG. Otherwise, ACQ will consider the TPA values given at the ONLINE, which may be wrong considering the values set at GAB.

2.8 TPA selection:

There are two ways in which TPA can be set for GWB, i.e. Online and Manual. As explained in Illustrations 8 and 9 above. For **Online TPA** user has to enter values as:

```
tpa (GABLO)_{p1} (GABLO)_{p2} (GABLO+70)_{p1} (GABLO+70)_{p2} 70 70 ==> FOR LSB tpa (GABLO)_{p1} (GABLO)_{p2} (GABLO-70)_{p1} (GABLO-70)_{p2} 70 70 ==> FOR USB
```

In case of **Manual TPA** the tpa values will be calculated by GWB ACQ using GAB RF/LO values entered at relevant sub-arrays.

Chapter 3: Troubleshooting

Some Quick Checks

If acquisition program fails to run then check for the following :

- 1. Machines required to run gpu cluster are ON.
- 2. Check for the Processes DualAdcConfig and SetCluster are getting executed sucessfully, If not then GWB ROACH-BOARDS may not be communicating / hanged / not in sync with each other. Sometimes extension of this can be observed in acquisition program "gwb_corr_released.sh"
- 3. Check for the processes , shared memory segment which are not closed properly. According clear those processes and shared memory segments, using following commands on gwbh6

a. /home/gpuuser/GWB/release/bin/clear_beam_shm.sh // for shm

b. */home/gpuuser/GWB/release/bin/kill_all_nodes.csh* // for orte-clean

4. Check for background mpi processes and clear the same.

IMPORTANT Notes

- i. GWB (GPU) can be run in parallel with GSB.
 - 1. Using above mentioned procedure. i.e. Using sockcmd.sh and dassrv-gpu processes.
 - 2. Using getcmd mode, while GSB is already running. No need to start sockcmd.sh and dassrv-gpu processes.
 - 3. Options to start client windows with sockcmd.sh and without sockcmd.sh are available in "Start->Gwb -Windows" options. And use gpucmd commands from online machine with arguments as initndas, initprj, strtndas, stpndas, etc.
 - 4. If no subar number is provided for gpucmd command then it will be executed for subar 4.
- ii. Dasmon is released, and can be started with following command : ssh -X gpuuser@gwbh6 -f dasmon

Antenna connections to GWB Roach boards

GWB Node No.	
gwbcorr1	
gwbcorr1	ROACH 1
gwbcorr1	
gwbcorr1	
gwbcorr2	
gwbcorr2	ROACH 2
gwbcorr2	
gwbcorr2	
gwbcorr3	
gwbcorr3	ROACH 3
gwbcorr3	
gwbcorr3	
gwbcorr4	
gwbcorr4	ROACH 4
gwbcorr4	
gwbcorr4	
	GWB Node No. gwbcorr1 gwbcorr1 gwbcorr1 gwbcorr2 gwbcorr2 gwbcorr2 gwbcorr3 gwbcorr3 gwbcorr3 gwbcorr4 gwbcorr4 gwbcorr4 gwbcorr4

E04(pol1) E05(pol1) E06(pol1) S01(pol1)	gwbcorr9 gwbcorr9 gwbcorr9 gwbcorr9	ROACH 5
S02(pol1) S03(pol1) S04(pol1) S06(pol1)	gwbcorr10 gwbcorr10 gwbcorr10 gwbcorr10	ROACH 6
W01(pol1) W02(pol1) W03(pol1) W04(pol1)	gwbcorr11 gwbcorr11 gwbcorr11 gwbcorr11	ROACH 7
W05(pol1) W06(pol1) C07(pol1) S05(pol1)	gwbcorr12 gwbcorr12 gwbcorr12 gwbcorr12	ROACH 8
C00(pol2) C01(pol2)	gwbcorr5 gwbcorr5	ROACH 9
C02(pol2) C03(pol2) C04(pol2)	gwbcorr5 gwbcorr5 gwbcorr6	
C05(pol2) C06(pol2) C08(pol2)	gwbcorr6 gwbcorr6 gwbcorr6	ROACH 10
C09(pol2) C10(pol2) C11(pol2) C12(pol2)	gwbcorr7 gwbcorr7 gwbcorr7 gwbcorr7	ROACH 11
C13(pol2) C14(pol2) E02(pol2) E03(pol2)	gwbcorr8 gwbcorr8 gwbcorr8 gwbcorr8	ROACH 12
E04(pol2) E05(pol2) E06(pol2) S01(pol2)	gwbcorr13 gwbcorr13 gwbcorr13 gwbcorr13	ROACH 13
S02(pol2) S03(pol2) S04(pol2) S06(pol2)	gwbcorr14 gwbcorr14 gwbcorr14 gwbcorr14	ROACH 14
W01(pol2) W02(pol2) W03(pol2) W04(pol2)	gwbcorr15 gwbcorr15 gwbcorr15 gwbcorr15	ROACH 15
W05(pol2) W06(pol2) C07(pol2) S05(pol2)	gwbcorr16 gwbcorr16 gwbcorr16 gwbcorr16	ROACH 16

Settings on signal generator: 800MHz frequency, +20 dbm power level, RF ON

Appendix - 1 BEAM INTEGRATION TABLE – for 200MHz 8-bit mode

This appendix gives the possible values for beam integration. The values are different for different no. of spectral channels. Below given are the values for both four stokes and single stokes. The corresponding sampling periods in milliseconds are also given

Note : All the values may not support pulsar das recording(writing beam data to disk)

Accurate Sampling period calculation :

Time(ms) = (No. of channels x 2 x No. of FFTs) / (400×10^{3})

Ir	iterferom	eter : Full Polar	mode	Interferometer : Total Intensity mode			
Channels	Stokes	No. of FFTs	Time(ms)	Channels	No. of FFTs	Time(ms)	
	1	32(max)	2.6		32(max)	2.6	
16384	4	16(min)	1.3		16	1.3	
		32(max)	2.6	16384	8	0.65	
	1	16	1.3		4	0.32	
	1	8	0.65		2(min)	0.16	
		4(min)	0.32		64(max)	2.6	
		64(max)	2.6		32	1.3	
	4	32	1.3	0107	16	0.65	
8192		16(min)	0.65	0192	8	0.32	
		64(max)	2.6		4	0.16	
		32	1.3		2(min)	0.08	
	1	16	0.65		256(max)	5.2	
		8	0.32		128	2.6	
		4(min)	0.16		64	1.3	
4096		256(max)	5.2	4006	32	0.65	
		128	2.6	4090	16	0.32	
	4	64	1.3		8	0.16	
		32	0.65		4	0.08	
		16(min)	0.32		2(min)	0.04	
	1	256(max)	5.2	2048	256(max)	2.6	
		128	2.6		128	1.3	
		64	1.3		64	0.65	
		32	0.65		32	0.32	
		16	0.32		16	0.16	

		8	0.16		8	0.08
		4(min)	0.08		4	0.04
		256(max)	2.6		2(min)	0.02
		128	1.3		256(max)	1.3
	4	64	0.65		128	0.65
		32	0.32		64	0.32
		16(min)	0.16	1074	32	0.16
2040		256(max)	2.6	1024	16	0.08
2040		128	1.3		8	0.04
		64	0.65		4	0.02
	1	32	0.32		2(min)	0.01
		16	0.16			
		8	0.08			
		4(min)	0.04			
		256(max)	1.3			
		128	0.65			
	4	64	0.32			
		32	0.16			
		16(min)	0.08			
1024		256(max)	1.3			
1024		128	0.65			
		64	0.32			
	1	32	0.16			
		16	0.08			
		8	0.04			
		4(min)	0.02			

Appendix - 2 BEAM INTEGRATION TABLE – for 400MHz 4-bit mode

This appendix gives the possible values for beam integration for 400MHz 4-bit mode. The values are different for different no. of spectral channels. Below given are the values for both four stokes and single stokes. The corresponding sampling periods in milliseconds are also given

Note : All the values may not support pulsar das recording(writing beam data to disk)

Accurate Sampling period calculation :

Time(ms) = (No. of channels x 2 x No. of FFTs) / (800 x 10^{3})

Interferometer : Full Polar mode			Interferometer : Total intensity mode			
Channels	Stokes	No. of FFTs	Time(ms)	Channels	No. of FFTs	Time(ms)
16384	4	32(min)	1.3		32(max)	1.3
		32(max)	1.3	10204	16	0.65
16384	1	16	0.65	10384	8	0.32
		8(min)	0.32		4(min)	0.16
	4	64(max)	1.3		64(max)	1.3
	4	32(min)	0.65		32	0.65
0102		64(max)	1.3	8192	16	0.32
8192	1	32	0.65		8	0.16
	1	16	0.32		4(min)	0.08
		8(min)	0.16		256(max)	2.6
	4	256(max)	2.6	4096	128	1.3
		128	1.3		64	0.65
		64	0.65		32	0.32
		32(min)	0.32	-	16	0.16
4000		256(max)	2.6		8	0.08
4096		128	1.3		4(min)	0.04
	1	64	0.65		256(max)	1.3
	1	32	0.32		128	0.65
		16	0.16		64	0.32
		8(min)	0.08	2048	32	0.16
	4	256(max)	1.3		16	0.08
2048		128	0.65		8	0.04
2040		64	0.32		4(min)	0.02
		32(min)	0.16	1024	256(max)	0.65

		256(max)	1.3	128	0.32
		128	0.65	64	0.16
	1	64	0.32	32	0.08
	1	32	0.16	16	0.04
		16	0.08	8	0.02
		8(min)	0.04	4(min)	0.01
		256(max)	0.65		
	4	128	0.32		
		64	0.16		
		32(min)	0.08		
1074		256(max)	0.65		
1024	1	128	0.32		
		64	0.16		
		32	0.08		
		16	0.04		
		8(min)	0.02		

Appendix - 3 BEAM INTEGRATION TABLE – for 100MHz 8-bit mode

This appendix gives the possible values for beam integration. The values are different for different no. of spectral channels. Below given are the values for both four stokes and single stokes. The corresponding sampling periods in milliseconds are also given

Note : All the values may not support pulsar das recording(writing beam data to disk)

Accurate Sampling period calculation :

Time(ms) = (No. of channels x 2 x No. of FFTs) / (200×10^{3})

Interferometer : Full Polar mode			Interferometer : Total Intensity mode			
Channels	Stokes	No. of FFTs	Time(ms)	Channels	No. of FFTs	Time(ms)
16384	4	32(max)	5.3		32(max)	5.3
	4	16(min)	2.6		16	2.6
		32(max)	5.3	16384	8	1.3
	1	16	2.6		4	0.65
	L	8	1.3		2(min)	0.32
		4(min)	0.65		64(max)	5.3
		64(max)	5.3		32	2.6
	4	32	2.6	0100	16	1.3
		16(min)	1.3	0192	8	0.65
0100		64(max)	5.3		4	0.32
0192		32	2.6		2(min)	0.16
	1	16	1.3		256(max)	10.6
		8	0.65		128	5.3
		4(min)	0.32		64	2.6
4096		256(max)	10.6	4000	32	1.3
		128	5.3	4090	16	0.65
	4	64	2.6		8	0.32
		32	1.3		4	0.16
		16(min)	0.65		2(min)	0.08
	1	256(max)	10.6	2048	256(max)	5.3
		128	5.3		128	2.6
		64	2.6		64	1.3
		32	1.3		32	0.65
		16	0.65		16	0.32

		8	0.32		8	0.16
		4(min)	0.16		4	0.08
		256(max)	2.6		2(min)	0.04
		128	2.6		256(max)	2.6
	4	64	1.3		128	1.3
		32	0.65		64	0.65
		16(min)	0.32	1074	32	0.32
2040		256(max)	5.3	1024	16	0.16
2040		128	2.6		8	0.08
		64	1.3		4	0.04
	1	32	0.65		2(min)	0.02
		16	0.32			
		8	0.16			
		4(min)	0.08			
		256(max)	2.6			
		128	1.3			
	4	64	0.65			
		32	0.32			
		16(min)	0.16			
1024		256(max)	2.6			
1024		128	1.3			
		64	0.65			
	1	32	0.32			
		16	0.16			
		8	0.08			
		4(min)	0.04			

Appendix – 4 IO budget, cost of Visibility IO and beam IO Total IO budget = 64 Cost of visibility IO = (16 x channels x no. of stokes^2) / (LTA * 2048 * 4) + 0.1 Cost of Beam IO (IA/PA) = ((0.5 x 128 x BW x BeamStokes) / (BeamIntegration * 200)) + 0.1 Note : BeamIntegration in No. of FFTS Cost of Voltage Beam IO = (32 x BW / 200) + 0.1

200MHz BW Total Intensity mode

Bandwidth = 200MHz No. of stokes = 2 (Total Intensity)

Channels	LTA	Visibility IO cost
	1	16.1
	2	8.1
2048	4	4.1
	8	2.1
	16	1.1
	32	0.6
	1	32.1
	2	16.1
4096	4	8.1
	8	4.1
	16	2.1
	32	1.1
	1	64.1
	2	32.1
8192	4	16.1
	8	8.1
	16	4.1

	32	2.1
	1	128.1
	2	64.1
16384	4	32.1
	8	16.1
	16	8.1
	32	4.1

cost of voltage beam IO = 32.1

Beamformer (IA or PA) IO cost

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam IO cost
	128	1.31072	0.6
	64	0.65536	1.1
2048	32	0.32768	2.1
	16	0.16384	4.1
	8	0.08192	8.1
	4	0.04096	16.1
	128	2.62144	0.6
	64	1.31072	1.1
4096	32	0.65536	2.1
	16	0.32768	4.1
	8	0.16384	8.1
	4	0.08192	16.1
	64	2.62144	1.1
8192	32	1.31072	2.1
0152	16	0.65536	4.1
	8	0.32768	8.1
	4	0.16384	16.1
	32	2.62144	2.1
16384	16	1.31072	4.1
10304	8	0.65536	8.1

	4	0.32768	16.1
--	---	---------	------

400MHz BW Total Intensity mode

Bandwidth = 400MHz

No. of stokes = 2 (Total Intensity)

Channels	LTA	Visibility IO cost
	1	16.1
	2	8.1
2048	4	4.1
	8	2.1
	16	1.1
	32	0.6
	1	32.1
	2	16.1
4096	4	8.1
	8	4.1
	16	2.1
	32	1.1
	1	64.1
	2	32.1
8192	4	16.1
	8	8.1
	16	4.1
	32	2.1
	1	128.1
	2	64.1
16384	4	32.1
	8	16.1
	16	8.1
	32	4.1

cost of voltage beam IO = 64.1

Beamformer (IA or PA) IO cost

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam IO cost
	128	0.65536	1.1
	64	0.32768	2.1
2048	32	0.16384	4.1
	16	0.08192	8.1
	8	0.04096	16.1
	128	1.31072	1.1
	64	0.65536	2.1
4096	32	0.32768	4.1
	16	0.16384	8.1
	8	0.08192	16.1
	64	1.31072	2.1
8107	32	0.65536	4.1
0152	16	0.32768	8.1
	8	0.16384	16.1
	32	1.31072	4.1
16384	16	0.65536	8.1
	8	0.32768	16.1

200MHz BW Full Polar mode

Bandwidth = 200MHz No. of stokes = 4 (Full Polar)

Channels	LTA	Visibility IO cost
	1	64.1
	2	32.1
2048	4	16.1
	8	8.1
	16	4.1
	32	2.1
	1	128.1
	2	64.1
4096	4	32.1
	8	16.1
	16	8.1
	32	4.1
	1	256.1
	2	128.1
8192	4	64.1
	8	32.1
	16	16.1
	32	8.1
	1	512.1
	2	256.1
16384	4	128.1
	8	64.1
	16	32.1
	32	16.1

No voltage beam in Full Polar mode.

IA or PA(Total Intensity)

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam IO cost
	128	1.31072	0.6
	64	0.65536	1.1
2048	32	0.32768	2.1
	16	0.16384	4.1
	8	0.08192	8.1
	4	0.04096	16.1
	128	2.62144	0.6
	64	1.31072	1.1
4096	32	0.65536	2.1
	16	0.32768	4.1
	8	0.16384	8.1
	4	0.08192	16.1
	64	2.62144	1.1
8107	32	1.31072	2.1
0152	16	0.65536	4.1
	8	0.32768	8.1
	4	0.16384	16.1
	32	2.62144	2.1
16384	16	1.31072	4.1
10504	8	0.65536	8.1
	4	0.32768	16.1

PA (Full Polar) – 4 stokes

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam IO cost
	128	1.31072	2.1
	64	0.65536	4.1
	32	0.32768	8.1

2048	16	0.16384	16.1
	128	2.62144	2.1
4096	64	1.31072	4.1
4050	32	0.65536	8.1
	16	0.32768	16.1
	64	2.62144	4.1
8192	32	1.31072	8.1
	16	0.65536	16.1
	32	2.62144	8.1
16384	16	1.31072	16.1

400MHz BW Full Polar mode

Bandwidth = 400MHz No. of stokes = 4 (Full Polar)

Channels	LTA	Visibility IO cost
	1	64.1
	2	32.1
2048	4	16.1
	8	8.1
	16	4.1
	32	2.1
	1	128.1
	2	64.1
4096	4	32.1
	8	16.1
	16	8.1
	32	4.1
	1	256.1
	2	128.1
8192	4	64.1
	8	32.1
	16	16.1
	32	8.1
	1	512.1
	2	256.1
16384	4	128.1
	8	64.1
	16	32.1
	32	16.1

No voltage beam in Full Polar mode.

Beamformer IO cost : IA or PA(Total Intensity)

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam IO cost
	128	0.65536	1.1
	64	0.32768	2.1
2048	32	0.16384	4.1
	16	0.08192	8.1
	8	0.04096	16.1
	128	1.31072	1.1
	64	0.65536	2.1
4096	32	0.32768	4.1
	16	0.16384	8.1
	8	0.08192	16.1
	64	1.31072	2.1
8107	32	0.65536	4.1
0152	16	0.32768	8.1
	8	0.16384	16.1
16204	32	1.31072	4.1
	16	0.65536	8.1
10504	8	0.32768	16.1
	4	0.16384	32.1

PA (Full Polar) – 4 stokes

Channels	Integration in no. of FFTS	Integration in time (ms)	Weigths
	128	0.65536	4.1
2048	64	0.32768	8.1
2040	32	0.16384	16.1

	16	0.08192	32.1
	128	1.31072	4.1
1096	64	0.65536	8.1
4050	32	0.32768	16.1
	16	0.16384	32.1
	64	1.31072	8.1
8192	32	0.65536	16.1
	16	0.32768	32.1
	32	1.31072	16.1
16384	16	0.65536	32.1

Appendix – 5 Narrowband mode

Decimation	No. of taps	Actual BW(MHz)	Usable BW (% of actual BW around centre)	Spectral Channels	Resolution (kHz)
1	64	100	100	2048, 4096, 8192, 16384	48.8, 24.4, 12.2, 6.1
2	64	50	98	2048, 4096, 8192, 16384	24.4, 12.2, 6.1, 3.05
4	64	25	97	2048, 4096, 8192, 16384	12.2, 6.1, 3.05, 1.52
8	128	12.5	97	2048, 4096, 8192, 16384	6.1, 3.05, 1.52, 0.76
16	128	6.25	96	2048, 4096, 8192, 16384	3.05, 1.52, 0.76, 0.38
32	128	3.125	75	2048, 4096, 8192, 16384	1.52, 0.76, 0.38, 0.19
64	256	1.5625	80	2048, 4096, 8192, 16384	0.76, 0.38, 0.19, 0.095

Appendix – 6 Output data rates

Visibility data rate

No. of baselines = 930 (Total Intensity mode) and 1860 (Full Polar mode)

Total Intensity mode =

((212 + (No. of baselines x Channels / 2)) + (No. of baselines x Channels x 8)) / (LTA x 0.671) bytes per second

Full Polar mode = ((348 + (No. of baselines x Channels / 2)) + (No. of baselines x Channels x 8)) / (LTA x 0.671) bytes per second

Total Intensity mode :

Channels	LTA	Visibility data rate (MB/s)
	1	23
	2	11.5
2048	4	5.75
	8	2.87
	16	1.43
	32	0.72
	1	46
	2	23
4096	4	11.5
	8	5.75
	16	2.87
	32	1.43
	1	92
	2	46
8192	4	23
	8	11.5
	16	5.75
	32	2.87
	1	184
	2	92
16384	4	46
	8	23
	16	11.5
	32	5.75

Channels	LTA	Visibility data rate (MB/s)
	1	46
	2	23
2048	4	11.5
	8	5.75
	16	2.87
	32	1.43
	1	92
	2	46
4096	4	23
	8	11.5
	16	5.75
	32	2.87
	1	184
	2	92
8192	4	46
	8	23
	16	11.5
	32	5.75
	1	368
	2	184
16384	4	92
	8	46
	16	23
	32	11.5

Full Polar mode :

Beam data rate =

(2 x Bandwidth x No. of Stokes) / (Beam Integration in FFTs) bytes per second 200MHz Total Intensity mode(Interferometer) IA/PA and Full Polar mode(Interferometer) IA/PA (PA Total Intensity mode)

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam data rate (MB/s)
2048	128	0.65536	3.125
	64	0.32768	6.25
	32	0.16384	12.5
	16	0.08192	25
	8	0.04096	50

1			
	128	1.31072	3.125
	64	0.65536	6.25
4096	32	0.32768	12.5
	16	0.16384	25
	8	0.08192	50
	64	1.31072	6.25
8107	32	0.65536	12.5
0152	16	0.32768	25
	8	0.16384	50
16384	32	1.31072	12.5
	16	0.65536	25
	8	0.32768	50

400MHz Total Intensity mode(Interferometer) IA/PA and Full Polar mode(Interferometer) IA/PA (PA Total Intensity mode)

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam data rate (MB/s)
2048	128	0.65536	6.25
	64	0.32768	12.5
	32	0.16384	25
	16	0.08192	50
	8	0.04096	100
4096	128	1.31072	6.25
	64	0.65536	12.5
	32	0.32768	25
	16	0.16384	50
	8	0.08192	100
8192	64	1.31072	12.5
	32	0.65536	25
	16	0.32768	50
	8	0.16384	100
16384	32	1.31072	25
	16	0.65536	50
	8	0.32768	100

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam data rate (MB/s)
2048	128	1.31072	12.5
	64	0.65536	25
	32	0.32768	50
	16	0.16384	100
4096	128	2.62144	12.5
	64	1.31072	25
	32	0.65536	50
	16	0.32768	100
8192	64	2.62144	25
	32	1.31072	50
	16	0.65536	100
16384	32	2.62144	50
	16	1.31072	100

200MHz Full Polar mode(Interferometer) PA (PA Full Polar mode)

400MHz Full Polar mode(Interferometer) PA (PA Full Polar mode)

Channels	Integration in no. of FFTS	Integration in time (ms)	Beam data rate (MB/s)
2048	128	0.65536	25
	64	0.32768	50
	32	0.16384	100
	16	0.08192	200
	8	0.04096	400
4096	128	1.31072	25
	64	0.65536	50
	32	0.32768	100
	16	0.16384	200
	8	0.08192	400
8192	64	1.31072	50
	32	0.65536	100
	16	0.32768	200
	8	0.16384	400

16384	32	1.31072	100
	16	0.65536	200
	8	0.32768	400
	4	0.16384	800

Appendix - 7 POWER ON/OFF PROCEDURE

1. Switch OFF procedure

a. Switch off the ROACH UNITS in the racks by holding down the Black switch on the front panel for ${\sim}5$ sec.

b. Switch off the Clock generator. This feeds clock signal of 800 MHz, +20dBm to the ROACH boards.

c. No need to switch off the SMPS used for PPS unit. This will get switched off directly from mains.

d. No need to switch off the infiniband switch. This will get switched off directly from mains.

e. Halt the control PC (192.168.4.68). NOTE : a. ssh -X <u>root@192.168.4.68</u> (gmrttifr) b. sudo halt -p

f. Halt the compute nodes i and host nodes by executing the script shutdown.sh in gwbh6 home folder.

NOTE : a. ssh -X gpuuser@gwbh6 b. ./shutdown.sh

2. Switch ON procedure

- a. Switch ON the control PC (192.168.4.68) in rack 3. It is 1 U pc.
- b. Make sure the infiniband switch is ON.
- c. Make sure the PPS unit is Switched ON.
- d. Switch ON the Clock Generator. Set the frequency to 800 MHz, amplitude to +20dBm, RF ON. Instructions on How to set clock settings :

- 1. Power ON the clock geneator by clicking the POWER button at botton left hand corner.
- 2. Set the clock to 800MHz. By clicking on the FUNCTION knob the cusrsor can be moved and value can be changed by rotating the knob.
- 3. Set the amplitude to +20dBm using the FUNCTION knob.
- 4. Click on the RF STANDBY button to turn RF ON.

e. Switch ON the ROACH UNITS in all racks 1,2,5,6 by holding down the Black switch on the front panel for ~2 sec.

f. Swich ON the compute nodes and host machines in all racks.

Appendix – 8 **GWB NETWORK DIAGRAM**

GWB4 (30 Antennas) Network connections Diagram.