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1. Introduction 
 
1.1 Introduction to GMRT: 
The Giant Metrewave Radio Telescope (GMRT), located near Pune in India, is the world’s 
largest array of radio telescopes at meter wavelengths. It is operated by the National Centre for 
Radio Astrophysics, a part of the Tata Institute of Fundamental Research, Mumbai. 
 
The GMRT contains 30 fully steerable telescopes, each 45 meters in diameter spread over 
distances of upto 25 km. The design of these antennas is based on  the `SMART' concept - 
Stretch Mesh Attached to Rope Trusses. The reflector made of wire rope stretched between 
metal struts in a parabolic configuration. This configuration works fine as the telescope operates 
at long wavelengths (21 cm and above). Every antenna has four different receivers mounted at 
the focus. Figure 1.1 shows one such antenna. Each individual receiver assembly can rotate, 
enabling the user to select any of them for the observation. GMRT antennas operate in five 
frequency bands, centered at 153, 233, 327, 610, and 1420 MHz. All these feeds provide dual 
polarization outputs. In some configurations, dual-frequency observations are also possible. 
 

 
Figure. 1.1 Antenna 



GMRT-TIFR Page 2 

 

Out of the 30 telescopes at GMRT, fourteen telescopes are randomly arranged in the central 
square of 1 km by 1 km in size. Rest sixteen telescopes are arranged in three arms of a nearly 
―’Y’-shaped array each having a length of 14 km from the array centre. The positions of the 
antennas in the antenna array have been shown in Figure 1.2. 
 

 
 

Figure. 1.2 Antenna Array at GMRT 
 
 
Therefore GMRT can act as an interferometer which uses a technique known as aperture 
synthesis to make images of radio sources. The multiplication or correlation of radio signals 
from all the 435 possible pairs of antennas or interferometers over several hours will thus enable 
radio images of celestial objects to be synthesized with a resolution equivalent to that obtainable 
with a single gigantic dish 25 kilometer in diameter! The maximum baseline in the array gives 
the telescope an angular resolution (the smallest angular scale that can be distinguished) of about 
1 arc-second, at the frequency of neutral hydrogen. To provide seamless coverage from 100 MHz 
to 1600 MHz in addition to upgrades to the mechanical and servo control systems to the antenna 
and an improved high speed telemetry system for controlling the antennas remotely. This needs a 
major upgrade to the backend electronics, two possible solutions to the backend upgrade are 
currently being developed – one based on multiple FPGA boards, and second on GPU cluster.  
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Currently, the GMRT is undergoing an upgrade. As part of the upgrade, the GMRT plans to 
increase the bandwidth of the GMRT from the present value of 32 MHz to about 400 MHz and 
also plans to upgrade the digital backend from GSB (GMRT software Backend) to FPGA and 
GPU based backend. 
 
 
1.2. Introduction to digital backend: 
 
The digital backend is responsible for digital signal processing of the telescopic data used in 
interferometer and beamforming modes.  
The digital signal is processed through FX Correlator (FX : FFT followed by Multiplier) to 
generate cross amplitude and phase information between each pair (baseline) among the 30 
antennas to give the visibility information.  
This data is used in imaging, continuum and many other astronomical observations. 
 
1.3. Introduction to the project: 
 
The Project of implementing and testing incoherent Packetized Beamformer is a part of the 
upgradation process of GMRT Backend system. 
In Radio astronomy, beamforming is a technique which is used to get the pulsar profile. It can be 
of two types such as, Incoherent beamforming mode and coherent beamforming mode. The 
incoherent beamformer adds voltage signals from different antennae and computes the basic self  
term of voltage signals of the two polarizations. This incoherent beamformer for 4 antennae and 
2 orthogonal polarizations is implemented on a multiple ROACH-boards (FPGA platform) and 
tested with proper pulsar source.  
 
1.4. Significance of the project: 
 
Pulsars are weak radio sources, and their individual pulses often do not rise above the 
background noise, so even with long base line it appears as a point source. Beamforming is the 
standard signal processing technique for its study to get its profile in higher resolution. 
Incoherent beamformer exhibits a higher sensitivity by √N times (N= no of antennae). As the 
voltage signals of different antennae are squared and added, the incoherent beamformer provides 
vital information of the pulsars. So as a part upgradation process of GMRT backend, incoherent 
beamformer is implemented on FPGA. 
 
 FPGA is chosen as a hardware platform for its re-configurable features and better computing 
resources with lesser power conservation and higher bandwidth compared to the software based 
solution. 
 
Within the scope of our project, we need to design the basic hardware and its interfacing utilities 
and test it with real time sources. So, the 4 antennae and 2 polarizations incoherent beamformer 
is implemented on multiple Virtex-5 pro FPGA (ROACH-board) to verify the functioning of the 
incoherent beamforming. 
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1.5. Aim and Objectives of the project: 
 
The aim of this project is to design and implement incoherent packetized beamformer on 
multiple ROACH boards (FPGA platform) for 4 antennae 2 polarizations and test the design with 
Pulsars to get the pulsar profile. 
The objectives of the project are: 
• Design and implement the incoherent beamformer for 4 antennae and 2 polarizations on 
   multiple FPGA platform (ROACH-board). 
• Write scripts for the necessary interfacings of the ROACH-board with host PC. 
• Simulation and implementation of design on hardware for verifying design logic. 
• Verify the design using sky-test, i.e. testing with signals from radio sources (Pulsar). 
 
 

1.6. Casper: 
 
The Center for Astronomy Signal Processing and Electronics Research (CASPER) is a global 
collaboration dedicated to streamlining and simplifying the design flow of radio astronomy 
instrumentation by promoting design reuse through the development of platform-independent, 
open-source hardware and software. 
The CASPER tool flow is better known as the MSSGE (Matlab/Simulink/System 
Generator/EDK) or bee xps tool flow. It is the platform for FPGA-based CASPER development 
and is the interface between several design and implementation environments. 
 
Casper design environment in GMRT that is used during the course of this project use 
following version of different utility 
� Matlab R2008a (v7.6.0) 
� Simulink R2008b (v7.2) 
� Xilinx System Generator v10.1.3.1386 
� Xilinx EDK v11.5 
� Xilinx ISE v11.5 
� MSSGE libraries 
 
The aim is to couple the real-time streaming performance of application-specific hardware with 
the design simplicity of general-purpose software. By providing parameterized, platform 
independent "gateware" libraries that run on reconfigurable, modular hardware building blocks, 
CASPER abstracts away low-level implementation details and allow astronomers to rapidly 
design and deploy new instruments. 
 

CASPER instruments use reconfigurable open-source hardware built around Xilinx FPGAs. The 
GMRT uses Virtex 5 SXT95 based standalone FPGA processing board also called ROACH 
( Reconfigurable Open Architecture Computing Hardware ). Figure 1.3 is an image of one such 
ROACH board. The ROACH board also has the 
Following features:  
• A separate PowerPC runs Linux and is used to control the board 



GMRT-TIFR Page 5 

 

• CX4/XAUI/10GbE Networks Interfacing Cards 
• ADC2x1000-8: Dual 8-bit, 1000Msps (or single 8-bit 2000Msps), Atmel/e2v 
AT84AD001B ADC 
 

 
 

Figure. 1.3 Virtex 5 ROACH board 
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2. Theoretical concepts 
2.1. Interferometry and correlator: 
 
Interferometry is a technique in which waves are superimposed in such a way that one can 
analyze wave property from residual phase and spectrum. Interferometry makes use of the 
principle of superposition to combine waves in a way that will cause the result of their 
combination to have some meaningful pattern that is diagnostic of the original state of the waves. 
This works because when two waves with the same frequency combine, the resulting pattern is 
determined by the phase difference between the two waves— waves that are in phase will 
undergo constructive interference while waves that are out of phase will undergo destructive 
interference. 
 A radio interferometer measures the mutual coherence function of the electric field due to a 
given source brightness distribution in the sky. The antennas of the interferometer convert the 
electric field into voltages. The mutual coherence function is measured by cross correlating the 
voltages from each pair of antennas. The measured cross correlation function is also called 
Visibility. In general it is required to measure the visibility for different frequencies (spectral 
visibility) to get spectral information for the astronomical source. 
 
The cross correlation between two signals �1 � and �2 � 
                                                                               �� � =< �1 � �2 � + � > 

Where � the time delay between the two signals and angle brackets is indicates averaging in 
time.  
 
According to Wiener-Khinchin theorem which says, the power spectral density (PSD) of a 
stationary stochastic process is defined to be the FT of its auto-correlation function that is if 
                                                             �� � =< �1(�)�2(� + �) > 
 then power spectral density function �� � is 
                                                                                

                                                                                                         

 

From the property of Fourier transform we have 

                                                                                              

2.2. Beamforming- coherent and incoherent: 
 
Pulsars are the weak radio sources, so their individual pulses often do not rise above the 
background noise level. Beamforming is the basic technique used for their studies. Beamforming 
is a signal processing technique used in sensor arrays for directional signal transmission or 
reception. This is achieved by combining elements in the array in such a way that signals at 
particular angles experience constructive interference while others experience destructive 
interference. In beamformer, the antennae signals can be added coherently or incoherently. 



GMRT-TIFR Page 7 

 

 
Incoherent Beamforming: 

 
• In incoherent beamformer, the voltage signals are firstly converted into power spectra. 
Then the power signals from the N dishes are combined to give the single incoherent 
beam. As the power spectra of the signals are added, the phase information is lost and no 
need of phase corrections. 
• Root of N improvement in sensitivity. 
• Beamwidth of single antenna. 
• Application in large scale pulsar search 
• The mathematical representation of the incohernt beamformer: 

�� = (�1
2 + �2

2) 
    This approach is used in the all the design in the course of this work. 

Coherent beamformer: 
• Voltage signals from the N dishes are combined to give the single coherent beam. As the 
 voltages are added, it should be in phase with each other to get the resultant coherent 
signal referred as beam. 
• N times improvement in sensitivity 
• Beamwidth becomes narrower than the single antenna by nearly 1/N times. 
 

• Application in studies individual known pulsars with its polarimetry studies. 
• The mathematical representation of the coherent beamformer 

�� = (�1 + �2)2 

2.3. Pulsar observations requirements: 
 
A pulsar is a rapidly rotating neutron star, highly magnetized which emits electromagnetic 
radiation beams from its magnetic poles as it rotates. The radiation is visible to us only if one of 
the poles points toward the earth. This appears to us as a very regular series of pulses with a 
period beam as low as milliseconds. The compact nature of its emission makes it a point source 
even for largest baseline on the earth.  

 

Figure 2.1: Radiation from pulsar 
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3. Packetized Beamformer Specifications 
 

� Number of antennas: 4 
 

� Polarization: Both polarization 
 

� Number of spectral channels: 512 
 

� Number of F engines: 4 
 

� Number of X-engines: 8 
 

� Number of spectral channels per X-engine:64 
 

� Networks used: 1Gbps, XAUI link and 10 Gb Ethernet. 
 

� Clock Frequency: 800 MHz 
 
� Bandwidth : 400 MHz 

 
� Base integration time: 0.163 milliseconds 

 
� Data rate from 1 X-engine: 27.19 Mbps. 

 
� Data rate from 8 X-engines: 223.2 Mbps. 
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4. Description of the project work: 
 
4.1. Four Antenna Packetized Beamformer Design:  
 
4 antenna packetized beamformer uses four F-engines and 8 X-engines. 
Figure 3.1 shows the function performed by an F-engine and also shows after which stage the 
signal for beamforming is taped. 
 

 
Figure 4.1. Functions performed by an F-engine 

 
Each block mentioned Figure (3.1) is explained in brief below: 
 
1. ADC: The ADCs interfaced to the ROACH board are ADC2x1000-8. They normally operate 
at 800MHzand give an 8 bit output through 4 channels each operating at 200MHz. This is done 
as the FPGA operates at 200MHz. In our design, the ADC is running at 400MHz clock 
frequency. 
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2. Delay: The radio sources in the sky are in motion over the sky. This differential change in 
position of the radio sources with respect to the antennas gives some delays. Other than that, the 
propagation delays from the antennas to the receiver are also considered. The whole delay that 
need to corrected for proper phasing is divided into two parts: 
a. Integral multiple of clock is implemented in course delay block. 
b. Fractional delay is implemented in fine delay fringe stop block. 
The data rate at the output will be 4 channels of 8 bits at 200MHz. 
 
3. PFB (Polyphase Filter Block) block: The polyphase filter bank implements a hamming 
window. The PFB is used to reduce spectral leakage and to increase signal to noise ratio. The 
data rate at the output will be 4 channels each of 18 bits at 200MHz. 
 
4. FFT (Fast Fourier Transform): The FFT block used is FFT Biplex Real 4x (real-sampled 
biplex FFT). This block computes the real-sampled Fast Fourier Transform using the biplex FFT 
algorithm to use a complex core to transform two real streams. The data rate of operation at FFT 
output is 36 bits each at 400MHz. One of the streams gives even channels while the other gives 
odd channels. Each channel consists of an 18 (fix 18_17 format)bit real part and an 18 bit 
imaginary part. 
 

5. Fine delay fringe stop Block: Fringe delay appears due to the down conversion of the RF 
signal to the baseband signal. The delay values are compensated for baseband signal but this give 
a drift in phase for RF signal. To compensate this drift in phase fringe stop is used. Using fine 
delay fringe stop block we can apply maximum 1 clock delay. 
 
6. Equalizer block: This block scale down the amplitude of incoming from the channels by a 
given factor to avoid the over flow during correlation and integration. The scaling factor depends 
on the integration time and power level of the signal. This block casts the 36 bits input data into 
8 bits data so that the bit growth during accumulation does not overflow 32 bits. 
 
7. Beamformer and Integration block: The beamformer block in the design performs the squaring 
of voltage of a channel and adds it to the square of voltage from other antennas. Its working is 
explained in detail in section 3.2. The output is all the self-correlated data. This beamformer data 
is transmitted using 10GbE so that host PC can read the data and store it on a disk for further use.  
 
8. Integration time = (No. of FFT cycle)*(No of FFT point)/(clock frequency) 
 

9. Data rate= packet size/integration time. 
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4.2 BEAMFORMER SUBSYSTEM FLOWCHART 

Figure 4.2 illustrates the signal flow of the beamformer subsystem. 

The flow diagram is divided into 2 parts : PART A & PART B 

 

 

 

 

Figure 4.2: Flowchart of Beamformer Subsystem 
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4.3.BEAMFORMER SUBSYSTEM DOCUMENTATION  

 Figure 4.3 shows the block diagram of BEAMFORMER_INCOH subsystem: 

PART A: 

 
Figure 4.3 Block diagram of Beamformer Subsystem:Part A 
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BLOCK DIAGRAM 

PART B: 

 
Figure 4.4 Beamformer Subsystem Block Diagram: Part B 
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4.3.1. INPUT TO THE SUBSYSTEM: 

 

Figure 4.5 Position of the Incoherent Beamformer subsystem in the Packetized Correlator Design 

The Beamformer subsystem comes after the Packet reorder block. Packet reorder block is the 
first part of an X-engine. It functions in the following manner: 

The input signal is given to the roach boards acting as the F engine. The signal initially goes 
through an ADC and then an FFT is taken. The data from 512 channels of the F- engine is passed 
on to the X- engine.  

All 512 channels are not processed by a single X- engine but in fact are distributed among the 8 
X-engines of the system. Each X-engine takes responsibility for processing only a certain 
number of channels. 512 channels distributed among 8 engines implies that each X-engine 
processes 64 channels individually. This means every 8 th channel is processed by the same X- 
engine. 

For eg. X engine 1: processes Channel 0, Channel 8,Channel 16………….Channel 504. 

            X engine 2: processes Channel 1, Channel 9, Channel 17………….Channel 505. 

            X engine 3: processes Channel 2, Channel 10, Channel 18………….Channel 506. 

X engine 4: processes Channel 3, Channel 11, Channel19………….Channel 507. 



GMRT-TIFR Page 15 

 

            X engine 5: processes Channel 4, Channel 12, Channel 20………….Channel 508. 

X engine 6: processes Channel 5, Channel 13, Channel21………….Channel 509. 

            X engine 7: processes Channel 6, Channel 14, Channel 22………….Channel 510. 

X engine 8: processes Channel 7, Channel 15, Channel23………….Channel 511. 

Each X-engine processes only it’s own set of channels irrespective of the antenna that the input 
is coming from. 

There is a checker within each X-engine which checks if the incoming channel belongs to it’s 
own set of channels. If it does belong then the X- engine accepts the data and passes it on to the 
beamformer subsystem for further processing. 

If the incoming channel does not belong to it’s own set of channels it does not accept the data 
and instead sends it to the 10 Gbe switch which routes it to the correct X- engine. 

 

Figure 4.6 Working of first part of X-engine 
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The inputs to the beamformer subsystem are the following three signals:

1. Data_valid signal: Boolean signa
is valid. 

2. Sync signal: For synchronization between different X
3. Input data: 16 bit data.

The input data comes in the following format:

Figure 4.7

4.3.2. WRITIG THE DATA TO RAM

The inputs to the beamformer subsystem are the following three signals: 

: Boolean signal; when high the incoming data at the input data port 

: For synchronization between different X-engines. 
: 16 bit data. 

The input data comes in the following format: 

4.7 Incoming Data format at the input data port 

2. WRITIG THE DATA TO RAM  

Figure 4.8 Writing Data to the RAM 
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l; when high the incoming data at the input data port 

 

format at the input data port for X-engine1 
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1. Antenna and corresponding RAM: The incoming data is written to four single port RAMs. 
Each of these RAMs is 16 bit wide and has 128 address locations.  Each one of these RAMs 
represents the corresponding antenna to which the data belongs. It is as follows. 

NUMBER OF ANTENNA FROM WHICH 
THE DATA IS COMING 

THE RAM TO WHICH THE DATA IS 
STORED 

Antenna 1 RAM 1 
Antenna 2 RAM 2 
Antenna 3 RAM 3 
Antenna 4 RAM 4 
 

2. Generating address for RAM: A 9 bit counter gives the address. Only the 7 LSB are used to 
generate the address for a particular RAM. The 2 MSB are used for generating write enable 
which is explained in the next point. This counter has reset and enable ports. The counter is reset 
at every sync and it is enabled only when the data valid signal goes high. 

3.Generating the write enable signal for RAM: One RAM has to be selected based on to which 
antenna the incoming data belongs to. This is done by using the 2 msb. Based on one them 
output of the selection block for only one BRAM is made high. 

 VALUE OF TWO MSB OF THE ADDRESS  THE RAM SELECTED 
00 RAM 1 
01 RAM 2 
10 RAM 3 
11 RAM 4 
 

Then this output and data_valid are ANDed together and that is given to the write enable of that 
particular RAM. 

4.Input data: The data comes as 128 time stamps for one channel from each antenna. This data is 
written into the single port RAM whose write enable is high. 

4.3.3 DELAY SECTION: 

1. Need: As seen earlier (in Section 4.3.1)the format in which the incoming data arrives at the 
data input port of the beamformer subsystem. The data from antenna 1 arrives first and this is 
followed by data from antennas 2, 3 and 4 sequentially. There are 128 timestamps of data from 
each antenna. So data for antenna 2 timestamp 1 comes 128 clock cycles after that of antenna 1 
time stamp 1. As the data comes sequentially, data for antenna 3 timestamp 1 comes 256 clock 
cycles after that of antenna 1 time stamp 1 and data for antenna 4 timestamp 1 comes 384 clock 
cycles after that of antenna 1 time stamp 1. In order that the data from all the antennas arrives at 
the same time for the next step of processing these delays are used. 
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2. Implementation: The timestamps from all antennas are made to arrive with the timestamps 
from antenna4 by delaying them. In order to provide these delays 3 separate delay blocks are 
used for antenna 1, 2 and 3. The data from antenna 4 is not delayed. 

ANTENNA NUMBER DELAYED BY  
Antenna 1 384 
Antenna 2 256 
Antenna 3 128 
 

The delay_bram block from the CASPER DSP Block set is used here as the delay block 

4.3.4. SELF-CORRELATION 

This is done separately for each antenna. Therefore we have four correlation subsystems used in 
the design.  

1. Separation of 16 bit input data: The 16 bits of input data contain data for both polarizations. 
The bottom 8 bits consist of data for polarization 0 and the top 8 bits consist of data for 
polarization 1. These 8 bits are contain of real and imaginary parts of  the data as can be seen 
from the figure bellow. 

 

Figure 4.9 Format of input data 

The separation of 16 bits data of the 128 time stamps is done sequentially. The 16 bit data is 
separated using slice block from the Xilinx simulink library. The processing of the two 
polarization has been done separately and in parallel here onwards. 

2.Squaring and Adding: As it is an imaginary number, the square of an imaginary number is 
done as follows: 

(a+ib)(a-ib)*=a2+b2.  We have used the multiplication block mult  from the Xilinx simulink 
library for squaring and AddSub block from the Xilinx simulink library for addition. For a 
particular antenna, 128 time stamps are squared and added sequentially. 
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4.3.5. ADDING DATA FROM ALL 4 ANTENNAS

For each antenna 2 outputs come out of the correlator subsystem. One is for polarization 0 and 
the other one is for polarization 2. Each of them gives out 128 timestamps of correlated data 
sequentially. 

Now, the data from all the four antennas is added together.
simulink library for addition. The

Figure

4.3.6. CREATING ONE VALUE OF 128 TIME STAMP VALUES 

The subsystem 128 timestamp_to_1_val

Figure 4.11

5. ADDING DATA FROM ALL 4 ANTENNAS  

For each antenna 2 outputs come out of the correlator subsystem. One is for polarization 0 and 
the other one is for polarization 2. Each of them gives out 128 timestamps of correlated data 

Now, the data from all the four antennas is added together.AddSub block from the Xilinx 
rary for addition. The figure 4.8 illustrates the addition. 

Figure 4.10 Adding data from all antenna 

6. CREATING ONE VALUE OF 128 TIME STAMP VALUES  

128 timestamp_to_1_val subsystem does this operation. 

Figure 4.11 Position of 128 timestamps_to_1_val subsyste
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For each antenna 2 outputs come out of the correlator subsystem. One is for polarization 0 and 
the other one is for polarization 2. Each of them gives out 128 timestamps of correlated data 

block from the Xilinx 

 

 

_to_1_val subsystem 
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1.Input to this subsystem: The following 3 signals are the input to this system. 

1. 128 timestamp data that comes sequentially at the input. 
2. The sync signal that comes as an input to the Beamformer subsystem. 
3. The control_acc signal generated. 

2. Generation of control_acc signal: 

This signal has been derived inside the subsystem. This signal goes high every time when 
timestamp 128 from antenna 4 for every channel arrives at the input. (i.e. when all 512 
timestamps which represent 1 channel have arrived at the input.) 

This signal is generated as follows: 

 

Figure 4.12 Generation of control_acc signal 

3.Internal Structure of 128 timestamp_to_1_val subsystem: 

 

Figure 4.13 Internal structure of 128 timestamps_to_1_val block. 
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1) Logic Used: The addition of 128 timestamps gives us the value for 1 channel. But next time 
when 128 timestamps come at the input they belong to a different channel. So a new addition has 
to begin after 128 time stamps belonging to one channel have been added. 

A multiplexer has been used for to serve this purpose. After every 128 clock cycles, 0 is selected 
as the second input to the adder. First input to the adder is the incoming timestamp data. 

If the incoming time stamp data belongs to the same channel then the adders output of previous 
cycle is used as a second input to the adder. 

2) Generation of pulse signal of period 128 clock cycle: 

Where is it used: This signal is used as a select signal to the multiplexer Mux,  which selects 
between 0 and the previous output of the adder, to be the second input to the adder. 

Why period of 128?:  A period of 128 is selected as we want to add 128 timestamps. 

3) Use of register: At the output of this subsystem we need only one value and that value should 
be addition of all correlated 128 timestamp values. 

At the output of the adder at every clock cycle we have addition of the time stamps. But only at 
one particular cycle the output of the adder will have the addition of all correlated 128 
timestamps. It is this value we desire. Whenever the control_acc signal goes high we have this 
value at the output of the adder. 

Hence, we have connected control_acc signal to the enable port of the register so that only the 
desired value is passed to the next stages. 

Register used here is the Xilinx Register from Xilinx Blockset ant the multiplexer used is 
Xylinx Bus Multiplexer  from Xilinx Blockset 

3.Outputs of this subsystem: The two outputs of this subsystem are the val1 and control _acc1 
signal. Val1 is the value that is obtained by adding all the 128 timestamps of that particular 
channel. i.e. val1 is the channel value. control_acc1 is just the control_acc signal delayed by 4. 

4.3.7. Accumulation of Sync cycles: 

Sync cycle_accumulation subsystem is used for this purpose. This block is used to integrate 
multiple number of Sync cycles so as to obtain an averaged value of the incoming data. 

The 3 inputs coming into the subsystem are: 

1. DATA_INPUT 
2. CONTROL_ACC 
3. SYNC 
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The outputs coming out of the subsystem are: 

1. INTEGRATED_CHANNEL_DATA 
2. TX_VALID 
3. END_OF_FRAME 

The position of this subsystem in the design of the beamformer subsystem is as shown in the 
following diagram. 

**Position in the flow of design 

We have divided the subsystem into 3 main parts in order to explain the flow of the design 
through it.  

 

1. Generation of end of cycle signal: 
 
This part depends on sync signal. 
 

 

Figure 4.14 Generation of end_of_cycle 
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A variable “number of cycle for integration” is provided by the user through a software register 
so as to specify the number of cycles for which  we want to integrate the channel data. It is 
configured through the Python script. 

 Let us say the value in the software register is given as n. 

  The Sync signal is used to enable a counter, when the value of this counter  equals the “number 
of cycles for integration” provided in the software register we get a high pulse. This high pulse 

indicates that n cycles have been integrated. Thus this high pulse signal is called to the “end of 

cycle” signal. This signal is also used to reset the counter so that the counting for next cycle can 
begin. 

 

2. Generation of new-accumulation,tx-valid,end of frame and we-
accumulator signals: 
 
This part depends on control_acc and the end of cycle signals. 

 

Figure 4.15 Generation of Tx_valid and end of frame 

Generation of these signals: 

Counter 1 is enabled by the “CONTROL_ACC” signal & reset by the “End of cycle” signal that 
was obtained in the first system. The output of this counter is given to Relational Operator 1. 
Relational Operator 1 compares this value with 63, as long as this value is less or equal to 63 we 
get a high pulse. 
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Counter 2 has only an Enable & no reset & even this counter is enabled by using the 
“CONTROL_ACC” signal. The output of this counter is given to Relational Operator 1. 
Relational Operator 1 compares this value with 63, as long as this value is less or equal to 63 we 
get a high pulse. 

The ouput of Relational Operator 2 is inverted. This inverted output is AND’ed with the output 
of Relational Operator 1. The output of this AND gate is given to a negative edge block. The 
output of this block is our “End of Frame signal”. The output of this negative edge block is given 
to a PULSE EXTENDER block. This output of this block is passed ahead to the 
“New_Accumulation” signal. 

The output of Relational Operator 1 is AND’ed with the “CONTROL_ACC” signal and the 
output of this AND gate is AND’ed  with the inverted output of Relational Operator 2 mentioned 
earlier. This is our “TX_VALID” signal. 

Use of these signals: 

We-accumulator: This signal is nothing but the control_acc signal that comes into the 2^15 cycle 
accumulator subsystem. This signal is used as a write enable signal for PORT A and PORT B of 
the dual port RAM. There is  delay difference between enable of port A and port B. 

New-accumulation: This signal is the select signal to the Mux before the adder in the part 3 of 

this subsystem. This signal stays high for the entire duration of cycle 1 of every n cycle 

integration. After that it stays low till the integration of n cycles is completed. 

Tx-valid: The “TX_VALID” signal is very important for transmission over 10GbE.  When this 
signal is high the core of the 10GbE accepts the data into the buffer. So, in our case every time 

addition of n cycles of channel values of the comes out of the PORTA of the dual port RAM, 

this signal goes high. That is, it is only in the last cycle that is nth cycle that we have the values 

that we want to transmit to the 10GbE block. 

End of Frame: The “End of Frame” is a very important signal from the point of view of 10GbE. 
The End of Frame signal should go high when the last data of that particular packet comes to the 

data input port of the 10GbE. So, in our case when addition of n cycles of channel number 63 

data values  values  comes out of the PORT A of the dual port RAM, this signal goes high That 

is, it is only in the last cycle, that is nth cycle, that we channel number 63 data comes out of port 

A this signal goes high 

When the “End of Frame” signal is received, the packet of data get transmitted over the Ethernet. 
“End of frame” signals the transceiver to begin transmitting the buffered frame. 
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3. Integration of multiple 2^15 cycles. 
 
We have used a Dual port RAM for carrying out the integration of multiple cycles. 
This dual port RAM is 32 bit wide and has 64 address locations. 
 
This part is further divided into 2 parts. 
 
1) Address Generation for Port A and Port B. 

This depends on both SYNC as well as CONTROL_ACC 

A Dual Port has 2 output ports A & B and requires 6 signals at it’s input.  

ADDR_A(Address location for Data in Port A),DIN_A(Input data for Port A), WE_A(When this 
signal is high the Data pointed by DIN_A is written into the address pointed by ADDR_A), 
similarly it also possesses ADDR_B, DIN_B, WE_B. These are for writing into Port B. 

 

Figure 4.16 Generation of address for dual port RAM. 

The ADDR_A is generated by a counter which is reset by SYNC signal & enabled by the 
“CONTROL_ACC” signal. Delays are adjusted accordingly. ADDR_B is then derived from 
ADDR_A as shown in the above figure. 

The depth of the RAM used is 64. 

We require ADDR_B to be differing from ADDR_A by the value 1. When ADDR_A is 0, 
ADDR_B is 1. When ADDR_A is 1, ADDR_B is 2   and so on. When ADDR_A goes to 63 
ADDR_B goes to 0(63+1=64(1000000) in 6 bits (000000)). The addition operation is done by an 
adder which uses wrap around mode in order to give us the above result. The following table 
illustrates the same. 
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ADDRESS OF PORT A (ADDR_A) ADDRESS OF PORT B (ADDR_B) 
0 1 
1 2 
2 3 
. . 
. . 
. . 
63 0 

 

2) Actual Integration done in dual port RAM:  
 
This part needs the following signals: 
 Data Input Signal,we_acc,new_acc,addr_a,addr_b. 

 

Figure 4.17 Accumulation using Dual Port RAM. 

The NEW_ACCUMULATION  that was obtained in the 2nd system is used as a Select signal for 
a MUX to choose between the output of Port B and a constant of Value 0.The logic used for 
integration is as follows: 

Let us consider the integration of first n cycles. 

Suppose in Cycle 1 the data for 64 channels comes into the system & in the next cycle i.e. Cycle 
2  a completely new set of data for 64 channels came into the system. Subsequently in Cycle 3 

the system receives a third set of data for 64 channels and so on till the nth cycle. We want the 

output of our system to be the addition of these n cycles. This can be accomplished as follows. 
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At the start of cycle 1 the “NEW_ACCUMULATION” signal selects the constant value 0 (input 
at port 1 of MUX) and this goes to the second input of adder for the addition operation. The data 
keeps streaming into the first input of the adder for the addition operation. Since the  value at 
second input is 0 the value at first input of adder gets added by 0 only and hence moves to the 
output of the Addition operation without a change. This data is directly written to the PORT A of 
the DUAL PORT RAM. This “NEW_ACCUMULATION” stays high for all the channels for 
every 1st cycle of integration. 

As was defined earlier the address at PORT B of the DUAL PORT RAM differs from  address at 
PORT A of the DUAL PORT RAM by 1. At the end of first cycle addr_b will be pointing to 
address0 of the dual port RAM and addr_a will be pointing to address 63. 

Let us now consider the start of 2nd cycle: 

The “NEW_ACCUMULATION” signal is designed that it now selects the value at Port 0 of the 
MUX. This is actually the output of Port B from the RAM. Earlier addr_B was pointing to 
address 0 then at the port B output contains the data for channel 0.Now this value moves on to 
the second input of the addition operation block.While at the second input of the adder we have 
the 2nd cycles input data for channel 0.These 2 values get added by the Addition Operation Block 
& moves onto the input at DATA_A.  

Thus in general it can be summarized as, the value of a certain channel at the first input  of the 
Addition operation block is it’s value in the 2nd cycle & the value of in 1st cycle comes at second 
input of the Addition operation block. Now in the 3rd cycle, the addition of the values of the 1st& 

2nd cycle get added to the now incoming data of the 3rd cycle, in the nth cycle the value at second 

input of the adder is the addition of all the previous cycles of that channel and at the first input of 

the adder the incoming data is the value of that channel in the nth cycle.  

This can be done for any number of cycles that the user wants to integrate. 

Once this number has been reached, the Output of the Dual Port RAM contains values that are to 
be sent forward to the Packetization stage. 

NOTE: This sync cycle accumulator works perfectly for 1 cycle of integration i.e. base 
integration. But for greater number of integrations there are some unexpected drops in the output. 
These have been removed using the logic of the on-board integrator given in the Add-on 
section(Chapter 9) of this report. 

4.3.8. PACKETIZATION STAGE : 

1) Requirements of 10GbE block: We have input data in the form of 16 bits which contains 
information from Polarization 0 and Polarization 1. This data gets split into the respective 
Polarizations and independent parallel processing takes place till this stage.  At the Packetization 
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stage the data is packetized according to the requirements of the 10GbE NIC. The 10GbE block 
accepts only a 64 bit wide data stream with user-determined frame breaks.  

2) Formation of 64 bits wide data: The data from both polarizations is 32 bit wide. Both 
polarizations are concatenated to form a width of 64 bits. Then this 64 bits wide data is stored in 
a Single port RAM before sending it to the 10GbE block. Then 10GbE block  wraps this data 
stream in a UDP frame for transmission. The block used for concatenation is the Concat block 
from Xilinx blockset in the Simulink library. 

 

Figure 4.18 Temporary storage before 10GbE block. 

3)The 10GbE setup: The 10GbE block requires inputs as data, reset, tx_valid, tx_dest_ip, 
tx_dest_port ,tx_end_of_frame. Out of these tx_end of frame, tx_valid and tx_data are generated 
inside the BEAMFORMER_INCOH subsystem.  

For the reset, tx_dest_ip and tx_dest_port software registers are present in the design. These 
software registers are configured via a python script. The following diagram shows the 10GbE 
setup within the design. The 10GbE block used is the ten_Gbe_v2 block from the BEE_XPS 
System Blockset in the Simulink library. 
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Figure 4.19

Figure 4.18 shows the signals that are given to the 10 GbE block and the relationship between 
them. 

4)UDP packet: The 10GbE block sends a out a UDP Packet. Packet Format that is transmitted 
over 10GbE is as follows: 

Figure 4.19 10GbE setup in the design. 

Figure 4.18 shows the signals that are given to the 10 GbE block and the relationship between 

Figure 4.20 Signals to the 10GbE. 

block sends a out a UDP Packet. Packet Format that is transmitted 
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Figure 4.18 shows the signals that are given to the 10 GbE block and the relationship between 

 

block sends a out a UDP Packet. Packet Format that is transmitted 
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Figure 4.21 UDP packet 

And the data in the UDP packet is as shown in figure 4.20 : 

 

Figure 4.22 Data in the UDP packet. 



GMRT-TIFR Page 31 

 

On a roach board, there are two X-engines; therefore there are two BEAMFORMER_INCOH 
subsystems on a single roach board. The 10GbE for the upper subsystem gives the output at 
10GbE port 2 of the roach board and the lower subsystem gives the output at 10GbE port1 of the 
roach board. 
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5. Calculations for Packetized 
Beamformer 

5.1 NUMBER OF BITS CALCULATION:  

(NOTE:  Where ever we say integration it refers to the 2^15 cycle accumulation.)  

The following calculation is done for one polarization. The same is true for the next. 

1)The 16 bits input data has the following content in it. 

 

We separate the real and imaginary parts of each polarization. 

2) Then, 

For each timestamp we do the following: 

R2+I2. 

Now the real part consists of 4 bits and the imaginary part consists of 4 bits. 

So, the maximum value for each one of them will be: 

Rmax=1111, Imax=1111. 

That is Rmax= Imax=16. 

3) Now we have to square each one of them: 

So, it will be: ( Rmax)
2=( Imax)

2= 256. 

Therefore the number of bits required to represent this maximum value will be 8 bits. 

4) Now in the next step we have to add the real part square and the imaginary part square. 
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So, ( ( Rmax)
2+( Imax)

2)=256+256=512. 

Therefore the number of bits required to represent this maximum value will be 9 bits. 

5) In the next stage we have to add all 128 timestamps value and make one value out of them. 

So, if all the 128 time stamp values have maximum value then the value of addition will be: 

128*( ( Rmax)
2+( Imax)

2)= 128*512=65536. 

Therefore the number of bits required to represent this maximum value will be 16 bits. 

This value represents the value for 1 channel without integration. 

Therefore 16 bits would be enough to represent the channel data values without 
integration. 

The same is true for other polarization. 

5.2 NUMBER OF INTEGRATION CYCLES:  

From the above calculation, we know that the maximum value for 1 channel can be represented 
in 16 bits. 

But we are using 32 bits for representing the channel data for one polarization. 

Therefore the maximum number of integrations that can be done are : 

(232) ÷ ( 216) = 216. 

Therefore we conclude that the maximum number of integrations that we can do is 216=65536. 

(NOTE: Following calculations have been done for 1 X-engine.) 

5.3 INTEGRATION TIME CALCULATION:  

In one sync cycle, we have 128 time samples for each channel are received from 4 antennas. In 
one sync cycle 64 channels are received by one X engine. 

Therefore we need 128*4*64 =32768 clock cycles. 

The operating frequency of ROACH  board is 200 MHz .Therefore, one clock cycle time period 
is 5nanosecond.Total time for one sync cycle to be completed = 32768 *5ns 
=0.163millisecond(163 microseconds.) 

If integrate further, then for 10 cycles the time taken would be 163 microsecond *10(1.63 
milliseconds.) 
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  These values have been verified with the wireshark software . As a packet is sent out after the 
specified numbers of integration cycles have been completed. 

The following image is a wireshark snapshot for base integration . The leftmost column displays 
the time at which the packet arrives from the X-engine. 

It is 163 micrsecond s*1(0.163milliseconds). 

 

Figure 5.1 Wireshark snapshot for 1 integration cycle. 

The following image is a wireshark snapshot for 2 integration cycles  . The leftmost column 
displays the time at which the packet arrives from the X-engine. 

It is 163 micrsecond s*2=0.326milliseconds. 

 

Figure 5.2 Wireshark snapshot for 2 integration cycles. 
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The following image is a wireshark snapshot for 10 integration cycles . The leftmost column 
displays the time at which the packet arrives from the X-engine. 

It is 163 micrsecond s*10(1.63milliseconds.) 

Figure 5.3 Wireshark snapshot for 10 integration cycles 

5.4 DATA RATE CALCULATION:  

The data that goes into one packet is as follows: 

           



GMRT-TIFR Page 36 

 

The minimum integration i.e. only 1 cycle of 2^15 is taken into consideration then every 0.163 
millisecond (i.e. 163 microsecond) , a packet is transmitted from the X-engine. The data packet 
that is sent over the 10Gbps has the following format:    

 

There are two options for capturing the data packets via Gulp. One option is to capture with the 
header and another without header. We will be calculating the data rate for both the options: 

1) Without header: 

Every 163 microsecond 1 packet of 512 bytes is sent out of one X-engine. 

Therefore in 1 second 3.14 Mbytes are transferred. 

      Data Rate = 3.14 Mbytes * 8 (to convert to bits per second)  

                  =25.13 Mbps. 

2) With Header: 

Every 163 microsecond 1 packet of 554 bytes is sent out of  one X-engine. 

Therefore in 1 second 3.398 Mbytes are transferred. 

Data Rate = 3.398 Mbytes * 8  (to convert to bits per second)  

                  =27.19 Mbps. 
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6. Depacketization and Post-Processing 
 

6.1 DEPACKETIZATION:  

This stage further consists of two parts.  

1. Converting to ASCII: The data packets captured by gulp are in binary format. 
These are converted into ASCII format. Further Polarization 1 and Polarisation 0 
data is separated. 

2. Separating into 8 files: Gulp captures packets that are sent over 10Gb Ethernet.8 
Different roach Boards are transmitting packets over a single 10Gb Ethernet. 
Hence these received packets have to be separated depending on the X-engine to 
which has transmitted that particular packet.  

6.2 POST-PROCESSING: 

In post processing, the data received from all the 8 X-engines separately, has to be interleaved in 
a particular order so as to get the entire spectrum of 512 channels. Section 6.3 explains both the 
Separation into 8 files and interleaving in depth.  

6.3 LOGIC USED FOR SEPARATION AND INTERLEAVING:  

The Packetized Beamformer design described here has the following specifications: 

1. Number of spectral channels: 512 
2. Number of X-engines: 8 
3. Number of channels processed by each X-engine: 64. 

Each X-engine receives data of only those 64 channels which it has programmed to process. 
After processing this data, each X engine sends out a packet which contains the channel data of 
these 64 channels. These packets are sent over a single 10GbE connection.But the channels that 
each X-engine receives are not consecutive. They are in the following format (Table X). 

Sr. No.                                  Channel Numbers for each X-engine: 
 X-engine1 X-engine2 X-engine3 X-engine4 X-engine5 X-engine6 X-engine7 X-engine8 

1 0 1 2 3 4 5 6 7 
2 8 9 10 11 12 13 14 15 
3 16 17 18 19 20 21 22 23 
. .. .. .. .. .. .. .. .. 
. .. .. .. .. .. .. .. .. 

63 496 497 498 499 500 501 502 503 
64 504 505 506 507 508 509 510 511 
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For processing the entire spectrum, we have to interleave the data of the 10GbE packets coming 
from each X-engine. Interleaving is carried out in 2 steps as follows. 

1. The incoming data captured by gulp is separated into 8 files depending on the source IP 
of the X-engines.  

2. The spectral channels from these 8 files have to be arranged serially. 

These two things are achieved using the following technique : 

1. Separating the data into 8 files (according to the X-engine): The data packets sent over 
the 10Gbe connection are UDP packets. Each of these packets contains a header of 42 
bytes. This header contains the IP address of the source and destination in the 27th to 30th 
byte respectively. 
The header structure is as follows: 

 
Figure 6.1 UDP Packet Header 

 
Each of the 8 X-engines uses a different IP address. So, the X-engine that is sending a 
particular packet can be identified on the basis of the source IP present in the packet 
header sent by it. 
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Gulp captures the packets along with the header. A utility is developed to extract the 
source IP from the header, identify it and accordingly select a file in which data has to be 
written. This utility also converts the packet data into GNU compatible and PMON 
compatible format. Thus 8 different files each containing data from a particular X-engine 
are created at the end of this process. 
 

2. Interleaving the 8 files to get a serial output: Then these 8 files are provided to the 
interleaving code which arranges the channel data sequentially. Figure 6.2 illustrates how 
channels from 8 different files are arranged in a single file.  
 

 
Figure 6.2 Interleaving 

In the figure 6.2, X1.txt contains data from X-engine 1, X2.txt contains data from X-
engine 2 and so on. 
 
A “packet count” can be an add-on to the system. It will ensure interleaving of time 
synchronized packets. 
 

3. Ensuring time synchronized interleaving: A packet counter can be transmitted along with 
the channel data. This is appended to the data packet at the packetization stage (before 
sending it over the 10 GbE link). This packet counter acts as a time stamp for 
synchronization of packet transmission from different X-engines. The process of 
interleaving starts with checking of the packet counter. Only the packets from different 
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X-engines containing same packet counter will be interleaved together. If even one X-
engine’s packet with a specific packet count is not received, then all the packets  with that 
packet count from other X-engines will be discarded. 
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7. Packetized Beamformer Test Setup

1) DESIGN SPECIFICATIONS:
Number of F-engines: 4
Number of X-engines: 8

2) ROACH BOARDS USED:
ROACH boards used as F
ROACH040241, ROACH040242, ROACH040237, ROACH040246.
ROACH boards used as X
ROACH030167, ROACH030116, ROACH030174, ROACH040235.

There are two X-engines per ROACH board. The X
ROACH boards are as 

ROACH BOARD NUMBER
030167 
030116 
030174 
040235 

Table (Y): ROACH board corresponding to the 8  X
 
(Note: Any other ROACH 
ROACH board in the config_4ant script. Also make changes in the server_f and server_x 
accordingly.) 
 

3) CONNECTIONS TO THE F
F-engine is given four inputs:
1) Sync 
2) I (Polarisation 0 input)
3) Clock 
4) Q (Polarisation 1 input)
 

Packetized Beamformer Test Setup
 

DESIGN SPECIFICATIONS:  
engines: 4 
engines: 8 

BOARDS USED: 
ROACH boards used as F-engine:  
ROACH040241, ROACH040242, ROACH040237, ROACH040246.
ROACH boards used as X-engine:  
ROACH030167, ROACH030116, ROACH030174, ROACH040235.

engines per ROACH board. The X-engines and the correspondin
ROACH boards are as mentioned in the following table: 

ROACH BOARD NUMBER CORRESPONDING X
X1 and X5 
X2 and X6 
X3 and X7 
X2 and X8 

Table (Y): ROACH board corresponding to the 8  X-

(Note: Any other ROACH board can be used by providing the name of the desired 
ROACH board in the config_4ant script. Also make changes in the server_f and server_x 

CONNECTIONS TO THE F -ENGINE: 
engine is given four inputs: 

2) I (Polarisation 0 input) 

4) Q (Polarisation 1 input) 

Figure 7.1 Connections to F-engine. 
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Packetized Beamformer Test Setup 

ROACH040241, ROACH040242, ROACH040237, ROACH040246. 

ROACH030167, ROACH030116, ROACH030174, ROACH040235. 

engines and the corresponding 

CORRESPONDING X-ENGINES 

-engines. 

board can be used by providing the name of the desired 
ROACH board in the config_4ant script. Also make changes in the server_f and server_x 
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4) 10 GbE PORT CONNECTIONS OF X-ENGINE: 
Every ROACH board has 4 10 GbE ports. The connections to them are as shown in the 
figure7.2: 
 

 
Figure 7.2 10GbE port connections of X-engine. 

 
5) CONNECTIONS BETWEEN F-ENGINE AND X-ENGINE: 

The connections between F-engine and X-engine are as shown in the following diagram: 
 

 
Figure 7.3 Connections between F-engine and X-engine 
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6) CONNECTIONS FROM X-ENGINE TO CONTROL PC: 
The connection from the X-engines to control PC is made via the 10GbE switch. The 
following diagram shows these connections. 
 

 
Figure 7.4 Connections from X-engines to control PC via 10 GbE switch. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



GMRT-TIFR Page 44 

 

8. Testing of the Designs and Results 

The BEAMFORMER_INCOH subsystem was designed in the MATLAB software using the 
blocks of CASPER blockset and XYLINX blockset in the simulink library. 

As the first step of testing, a 16 bit counter data was given as input to the 
BEAMFORMER_INCOH subsystem and the results were verified by matching the results with 
theoreotical calculation. The simulation results are attached below. 

8.1 Simulation results 

Test parameters for the simulation carried out: 

Input: 16 bit counter. 

No. of cycles for which 2^15 accumulation is to be carried out: 3. 

1) Input: The Figure 8.1 is the output of the 16 bit counter as given to the beamformer 
subsystem for 3 2^15 cycle. One ramp is considered as 128 timestamp data for all 64 
channels in one sync cycle. 
 

 
Figure 8.1 Simulation: Counter input 
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2) Addition of 128 timestamps from all antennas: 

 
Figure 8.2 Simulation: Addition of 128 timestamps from all antennas. 

 
3) Output of 2^15 accumulator block: 

The accumulation takes place as follows. As our design is for accumulating 3 cycles of 
2^15, we can see that it adds the 3 cycles of 2^15 and after that it starts new 
accumulation. 

 
Figure 8.3: Simulation: Output of accumulator block. 

 
4) Generation of data,tx_valid and eof for 10Gbe core: 

(Refer Figure 8.4) 

1.The 1st graph shows the the ouput data after concatenating the polarisation1 and                                  
polarization 0 data. Each signal corresponds to one channel data. They are 64 in number. 

2. The 2nd graph shows the data transmission valid signal which is fed to Tx_valid signal    
of the 10GbE NIC. 

              3.  The 3rd signal shows the end of frame signal. After this signal goes from 1 to 0, the 
10GbE NIC acknowledge it as a end of one packet. 
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Figure 8.4 Simulation: 10GbE signals. 
 

8.2 Sinewave test result 
 
1.Sine wave test 1 

Input: Sine wave at frequency 187.5 MHz 

Roach board used: roach030167 used as X-engine. 

Expected output:  

 The frequency 187.5 MHz belongs to channel number 30 of this X-engine. A peak is expected 
in the output at channel number 30 . 

Interpretation of the figure: 

X –axis: Channel number 

Y-axis: Amplitude 
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A peak is present at channel number 30. No where else a peak is present. This indicates that 
input signal contains frequency component corresponding to channel no.30 of this particular X-
engine. 

 
 

Figure 8.5: Sine wave test result 1 
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2.Sine wave test 2 

Channel 8 in the 512 channel spectrum.  

Frequency: 6.25 MHz  

X-engine used: 1 

 X-engine channel no.:1 

 

 
Figure 8.6: Sine wave test result 2 

 
 

8.3 Interleaved data from 8 X-engines: 

TEST : To check the functioning of interleaving code. 

Connection:One to one connection between X-engine and control PC 

Input: Sine wave frequencies belonging to each X-engines were given one by one as an input. 

Processing: Data was captured separately and interleaved. 
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Output: Peaks observed at the respective channel numbers. 

 

Figure 8.7: Interleaving result for 8 separate files. 

 

8.4 Role played by data_valid 

Sine wave without Data_valid:  
(Refer figure 8.8)  
The input and output both were shifted.  
Notice the peak in output.        
Input: Frequency:156.25 MHz                       
Channel input: 25          
Output channel:26(shifted)        
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Figure 8.8: Sinewave Output-Data_valid not used. 

 
Sine wave output with Data_valid: 
(Refer figure 8.9) 
 
The shifting is eliminated. 
Peak at exact location. 
Input Frequency:325 MHz 
Channel input: 52 
Output channel:52 (not shifted) 
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Figure 8.9: Sinewave Output: Data_valid used 

 
8.5  Noise test results 

Connections: All 8 X-engines connected to control PC via 10GbE switch 

Input: Signal from noise generator passed through a low pass filter of 200 Mhz. 

Output: GNU plot of the interleaved data from all X-engines 
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Figure 8.10. Noise Test Result-512 channel spectrum 

Comaprison: Output of packetized Correlator Output and packetized Beamformer for Noise test. 

 

Figure 8.11 Comparison: Packetized Correlator output v/s Packetized Beamformer output 
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8.6 Improvement in sensitivity with increase in  number of antenna 

Refer figure 8.12. 

The colour code is as follows: 

Pink- Noise output for input given to 1 antenna. 

Blue- Noise output for input given to 2 antennas. 

Green- Noise output for input given to 3 antennas. 

Red- Noise output for input given to 4 antennas. 

 
Figure 8.12. Noise test Output for Increasing Number of Antennas. 
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8.7 Pulsar test: 

1.TEST: 

• Date of observation: 30th October 2013.  

• Pulsar: B0329+54(Period: 714.578196 msec) 

• Antennas used: 4 central square antennas used. 

• Sampling clock: 800MHz. 

• Data acquisition: 5mins 

• Integration time: 0.164 millisecond 

• Beamformer Bandwidth: 400 MHz 

• RF Bandwidth: 32 MHz 

• Number of channels:512 

 

Figure 8.13 PMON Profile for Pulsar B0329+54 



GMRT-TIFR Page 55 

 

COMPARING PULSAR RESULT WITH THEOREOTICAL RESULT: Pulsar 
B0329+54 

        GSB Output                                   EPN Archive 
      
 
 
 
 

 

 

 

 

Figure 8.14:GSB output:Pulsar B0329+54                   Figure 8.15:EPN Archive:PulsarB0329+54 

PACKETIZED BEAMFORMER OUTPUT 
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2.TEST : Pulsar test at 400Mhz RF Bandwidth. 

• Date of observation: 27th November 2013. 

• Pulsar: B0329+54 

• Antennas used: 4 central square antennas used. 

• Sampling clock:800MHz. 

• Integration time: 0.164 millisecond 

• Beamformer Bandwidth: 400 MHz 

• RF Bandwidth: 400 MHz 

• Number of channels:512 

 

Figure 8.16 PMON Profile of Pulsar B0329+54 at 400MHz R.F. B.W. 

This is the first detection through this design at full 400 MHz RF in the L-Band. Local Oscillator at 1450 

MHz. 
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9. Add-on to the Beamformer Subsystem
This section briefly explains the add
separately. 

9.1 Add-On:On-board integrator:

Purpose: Used for multiple sync cycle integration.

Working: 

1) Accumulation is done in Dual Port RAM.
2) Three signals are generated:  End cycle_minus 1, end_cycle plus 1 and end 

cycle,end_cycle_minus1_ext.
3) Registers are used to give 

registers are enabled and reset accordingly.
4) New_ acc gen:Register reset by end_cycle plus 1, enable by end cycle 1
5) Tx_valid:  Register reset by end_cycle minus1_ ext, enable by end cycle minus 1,. 

of this register is added with write enable which is input to this subsystem.
6) End of frame: counts 64 tx_valid and goes high on the 64

Timing Diagram: Figure 9.1 and 9.2 illustrate the timing diagram for accumulation of 3 sync 
cycles. 

Figure 9.1 Add

New_acc signal should be high for the first sync cycle of every accumulation as it is the select 
signal to the MUX that selects the second input to the adder.

 

 

on to the Beamformer Subsystem
This section briefly explains the add-ons that have been added to the beamformer subsystem

board integrator:  

: Used for multiple sync cycle integration. 

Accumulation is done in Dual Port RAM. 
Three signals are generated:  End cycle_minus 1, end_cycle plus 1 and end 
cycle,end_cycle_minus1_ext. 
Registers are used to give a continuous high signal till some desired instant. These 
registers are enabled and reset accordingly. 
New_ acc gen:Register reset by end_cycle plus 1, enable by end cycle 1
Tx_valid:  Register reset by end_cycle minus1_ ext, enable by end cycle minus 1,. 
of this register is added with write enable which is input to this subsystem.
End of frame: counts 64 tx_valid and goes high on the 64th tx_valid.

Figure 9.1 and 9.2 illustrate the timing diagram for accumulation of 3 sync 

Figure 9.1 Add-on: Generation of new_acc signal 

New_acc signal should be high for the first sync cycle of every accumulation as it is the select 
signal to the MUX that selects the second input to the adder. 
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on to the Beamformer Subsystem 
ons that have been added to the beamformer subsystem 

Three signals are generated:  End cycle_minus 1, end_cycle plus 1 and end 

a continuous high signal till some desired instant. These 

New_ acc gen:Register reset by end_cycle plus 1, enable by end cycle 1 
Tx_valid:  Register reset by end_cycle minus1_ ext, enable by end cycle minus 1,. Output 
of this register is added with write enable which is input to this subsystem. 

tx_valid. 

Figure 9.1 and 9.2 illustrate the timing diagram for accumulation of 3 sync 

 

 

New_acc signal should be high for the first sync cycle of every accumulation as it is the select 
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Figure 9.2 Add

64 tx_valid should come in the last sync cycle of every accumulation  and end of frame should 
go high on every 64th tx_valid.

Status:  Design is compiled and tested for each X

Result: Figure 9.3 shows noise test results for 10 integration cycle(green) and 100 integration 
cycle(red). The results are only for 1 X

Figure 9.3 Add

Figure 9.2 Add-on: Generation of Tx-valid and end of frame.

64 tx_valid should come in the last sync cycle of every accumulation  and end of frame should 
tx_valid. 

:  Design is compiled and tested for each X-engine separately. Results are as expected.

s noise test results for 10 integration cycle(green) and 100 integration 
cycle(red). The results are only for 1 X-engine. 

 

Figure 9.3 Add-on: Multiple Integration Result. 
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nd of frame. 

64 tx_valid should come in the last sync cycle of every accumulation  and end of frame should 

engine separately. Results are as expected. 

s noise test results for 10 integration cycle(green) and 100 integration 
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9.2 Add-on:Packet counter: 

Purpose: Time synchronized interleaving of packets.

Working: A packet count is added to the data packet after the values for all 64 channels of that 
X-engine have arrived at the data input of the 10GbE v2 block of that particular X

Data-packet: It will now be of 520 bytes as 8 byte packet counter is

Figure 9.4 Data packet with packet counter

The UDP packet size will be 520 bytes(data)+42 bytes(header) i.e. 562 bytes.

Timing Diagram: Figure 9.5 shows the timing diagram for 10 GbE signals when a packet count 
is transmitted along with data.

Figure 9.5 Add

 

: Time synchronized interleaving of packets. 

: A packet count is added to the data packet after the values for all 64 channels of that 
engine have arrived at the data input of the 10GbE v2 block of that particular X

: It will now be of 520 bytes as 8 byte packet counter is added to the packet.

 

Figure 9.4 Data packet with packet counter 

The UDP packet size will be 520 bytes(data)+42 bytes(header) i.e. 562 bytes.

Figure 9.5 shows the timing diagram for 10 GbE signals when a packet count 
is transmitted along with data. 

Figure 9.5 Add-on: 10 GbE signals for packet counter
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: A packet count is added to the data packet after the values for all 64 channels of that 
engine have arrived at the data input of the 10GbE v2 block of that particular X-engine. 

added to the packet. 

The UDP packet size will be 520 bytes(data)+42 bytes(header) i.e. 562 bytes. 

Figure 9.5 shows the timing diagram for 10 GbE signals when a packet count 

 

on: 10 GbE signals for packet counter 



GMRT-TIFR Page 60 

 

An extra tx_valid is generated for the packet count value and the end of frame goes high with 
this extra tx_valid. In this case, 65 tx_valids will be there. 

Status: Design checked in simulation. Size of  data packet checked in wireshark. It is found to be 
520 bytes.  
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10. Future work and recommendations 
 
 
 

� Scale the design to 8 antennas 
 

� Scale the design for greater number of channels 
 

� Attempt time synchronized interleaving using packet counter logic. Develop 
Post-processing scripts for the same. 
 

� Attempt Sync cycle integration for all 8 X-engines together. 
 

� Analysis of relative improvement in SNR as a function of number of 
antennas.  
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Appendix A 
APPENDIX A-1 

This is a list of the Frequencies that belong to X-engine1 and X-engine 2. 

Each X-engine processes 64 channels. 

Column 1 shows the Channel in the respective X-engine out of the 64 channels. 

Column 3 shows the Channel number for  X-engine 1 out of the total 512 channels. 

Column 4 shows the Frequencies accepted by X-engine 1 in MHz. 

Column 6 shows the Channel number for  X-engine 2 out of the total 512 channels.  

Column 7 shows the Frequencies accepted by X-engine 2 in MHz. 

 

Channel 

 

X ENGINE 1 FREQUENCY 

 

X ENGINE 2 FREQUENCY 

   

(MHZ) 

  

(MHZ) 

0 

 

0 0.00 

 

1 0.78125 

1 

 

8 6.25 

 

9 7.03125 

2 

 

16 12.50 

 

17 13.28125 

3 

 

24 18.75 

 

25 19.53125 

4 

 

32 25.00 

 

33 25.78125 

5 

 

40 31.25 

 

41 32.03125 

6 

 

48 37.50 

 

49 38.28125 

7 

 

56 43.75 

 

57 44.53125 

8 

 

64 50.00 

 

65 50.78125 

9 

 

72 56.25 

 

73 57.03125 

10 

 

80 62.50 

 

81 63.28125 

11 

 

88 68.75 

 

89 69.53125 

12 

 

96 75.00 

 

97 75.78125 

13 

 

104 81.25 

 

105 82.03125 

14 

 

112 87.50 

 

113 88.28125 

15 

 

120 93.75 

 

121 94.53125 

16 

 

128 100.00 

 

129 100.78125 

17 

 

136 106.25 

 

137 107.03125 

18 

 

144 112.50 

 

145 113.28125 

19 

 

152 118.75 

 

153 119.53125 

20 

 

160 125.00 

 

161 125.78125 

21 

 

168 131.25 

 

169 132.03125 
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22 

 

176 137.50 

 

177 138.28125 

23 

 

184 143.75 

 

185 144.53125 

24 

 

192 150.00 

 

193 150.78125 

25 

 

200 156.25 

 

201 157.03125 

26 

 

208 162.50 

 

209 163.28125 

27 

 

216 168.75 

 

217 169.53125 

28 

 

224 175.00 

 

225 175.78125 

29 

 

232 181.25 

 

233 182.03125 

30 

 

240 187.50 

 

241 188.28125 

31 

 

248 193.75 

 

249 194.53125 

32 

 

256 200.00 

 

257 200.78125 

33 

 

264 206.25 

 

265 207.03125 

34 

 

272 212.50 

 

273 213.28125 

35 

 

280 218.75 

 

281 219.53125 

36 

 

288 225.00 

 

289 225.78125 

37 

 

296 231.25 

 

297 232.03125 

38 

 

304 237.50 

 

305 238.28125 

39 

 

312 243.75 

 

313 244.53125 

40 

 

320 250.00 

 

321 250.78125 

41 

 

328 256.25 

 

329 257.03125 

42 

 

336 262.50 

 

337 263.28125 

43 

 

344 268.75 

 

345 269.53125 

44 

 

352 275.00 

 

353 275.78125 

45 

 

360 281.25 

 

361 282.03125 

46 

 

368 287.50 

 

369 288.28125 

47 

 

376 293.75 

 

377 294.53125 

48 

 

384 300.00 

 

385 300.78125 

49 

 

392 306.25 

 

393 307.03125 

50 

 

400 312.50 

 

401 313.28125 

51 

 

408 318.75 

 

409 319.53125 

52 

 

416 325.00 

 

417 325.78125 

53 

 

424 331.25 

 

425 332.03125 

54 

 

432 337.50 

 

433 338.28125 

55 

 

440 343.75 

 

441 344.53125 

56 

 

448 350.00 

 

449 350.78125 

57 

 

456 356.25 

 

457 357.03125 

58 

 

464 362.50 

 

465 363.28125 

59 

 

472 368.75 

 

473 369.53125 

60 

 

480 375.00 

 

481 375.78125 

61 

 

488 381.25 

 

489 382.03125 

62 

 

496 387.50 

 

497 388.28125 
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63 

 

504 393.75 

 

505 394.53125 
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APPENDIX A-2 

This is a list of the Frequencies that belong to X-engine 3 and X-engine 4. 

Each X-engine processes 64 channels. 

Column 1 shows the Channel in the respective X-engine out of the 64 channels. 

Column 3 shows the Channel number for  X-engine 3 out of the total 512 channels.  

Column 4 shows the Frequencies accepted by X-engine 3 in MHz. 

Column 6 shows the Channel number for  X-engine 4 out of the total 512 channels.  

Column 7 shows the Frequencies accepted by X-engine 4 in MHz. 

 

Channel 

 

X ENGINE 3 FREQUENCY 

 

X ENGINE 4 FREQUENCY 

   

(MHZ) 

  

(MHZ) 

0 

 

2 1.5625 

 

3 2.34375 

1 

 

10 7.8125 

 

11 8.59375 

2 

 

18 14.0625 

 

19 14.84375 

3 

 

26 20.3125 

 

27 21.09375 

4 

 

34 26.5625 

 

35 27.34375 

5 

 

42 32.8125 

 

43 33.59375 

6 

 

50 39.0625 

 

51 39.84375 

7 

 

58 45.3125 

 

59 46.09375 

8 

 

66 51.5625 

 

67 52.34375 

9 

 

74 57.8125 

 

75 58.59375 

10 

 

82 64.0625 

 

83 64.84375 

11 

 

90 70.3125 

 

91 71.09375 

12 

 

98 76.5625 

 

99 77.34375 

13 

 

106 82.8125 

 

107 83.59375 

14 

 

114 89.0625 

 

115 89.84375 

15 

 

122 95.3125 

 

123 96.09375 

16 

 

130 101.5625 

 

131 102.34375 

17 

 

138 107.8125 

 

139 108.59375 

18 

 

146 114.0625 

 

147 114.84375 

19 

 

154 120.3125 

 

155 121.09375 

20 

 

162 126.5625 

 

163 127.34375 

21 

 

170 132.8125 

 

171 133.59375 

22 

 

178 139.0625 

 

179 139.84375 

23 

 

186 145.3125 

 

187 146.09375 
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24 

 

194 151.5625 

 

195 152.34375 

25 

 

202 157.8125 

 

203 158.59375 

26 

 

210 164.0625 

 

211 164.84375 

27 

 

218 170.3125 

 

219 171.09375 

28 

 

226 176.5625 

 

227 177.34375 

29 

 

234 182.8125 

 

235 183.59375 

30 

 

242 189.0625 

 

243 189.84375 

31 

 

250 195.3125 

 

251 196.09375 

32 

 

258 201.5625 

 

259 202.34375 

33 

 

266 207.8125 

 

267 208.59375 

34 

 

274 214.0625 

 

275 214.84375 

35 

 

282 220.3125 

 

283 221.09375 

36 

 

290 226.5625 

 

291 227.34375 

37 

 

298 232.8125 

 

299 233.59375 

38 

 

306 239.0625 

 

307 239.84375 

39 

 

314 245.3125 

 

315 246.09375 

40 

 

322 251.5625 

 

323 252.34375 

41 

 

330 257.8125 

 

331 258.59375 

42 

 

338 264.0625 

 

339 264.84375 

43 

 

346 270.3125 

 

347 271.09375 

44 

 

354 276.5625 

 

355 277.34375 

45 

 

362 282.8125 

 

363 283.59375 

46 

 

370 289.0625 

 

371 289.84375 

47 

 

378 295.3125 

 

379 296.09375 

48 

 

386 301.5625 

 

387 302.34375 

49 

 

394 307.8125 

 

395 308.59375 

50 

 

402 314.0625 

 

403 314.84375 

51 

 

410 320.3125 

 

411 321.09375 

52 

 

418 326.5625 

 

419 327.34375 

53 

 

426 332.8125 

 

427 333.59375 

54 

 

434 339.0625 

 

435 339.84375 

55 

 

442 345.3125 

 

443 346.09375 

56 

 

450 351.5625 

 

451 352.34375 

57 

 

458 357.8125 

 

459 358.59375 

58 

 

466 364.0625 

 

467 364.84375 

59 

 

474 370.3125 

 

475 371.09375 

60 

 

482 376.5625 

 

483 377.34375 

61 

 

490 382.8125 

 

491 383.59375 

62 

 

498 389.0625 

 

499 389.84375 

63 

 

506 395.3125 

 

507 396.09375 
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APPENDIX A-3 

This is a list of the Frequencies that belong to X-engine 5 and X-engine 6. 

Each X-engine processes 64 channels. 

Column 1 shows the Channel in the respective X-engine out of the 64 channels. 

Column 3 shows the Channel number for  X-engine 5 out of the total 512 channels.  

Column 4 shows the Frequencies accepted by X-engine 5 in MHz. 

Column 6 shows the Channel number for  X-engine 6 out of the total 512 channels.  

Column 7 shows the Frequencies accepted by X-engine 6 in MHz. 

 

Channel 

 

X ENGINE 5 FREQUENCY 

 

X ENGINE 6 FREQUENCY 

   

(MHZ) 

  

(MHZ) 

0 

 

4 3.125 

 

5 3.90625 

1 

 

12 9.375 

 

13 10.15625 

2 

 

20 15.625 

 

21 16.40625 

3 

 

28 21.875 

 

29 22.65625 

4 

 

36 28.125 

 

37 28.90625 

5 

 

44 34.375 

 

45 35.15625 

6 

 

52 40.625 

 

53 41.40625 

7 

 

60 46.875 

 

61 47.65625 

8 

 

68 53.125 

 

69 53.90625 

9 

 

76 59.375 

 

77 60.15625 

10 

 

84 65.625 

 

85 66.40625 

11 

 

92 71.875 

 

93 72.65625 

12 

 

100 78.125 

 

101 78.90625 

13 

 

108 84.375 

 

109 85.15625 

14 

 

116 90.625 

 

117 91.40625 

15 

 

124 96.875 

 

125 97.65625 

16 

 

132 103.125 

 

133 103.90625 

17 

 

140 109.375 

 

141 110.15625 

18 

 

148 115.625 

 

149 116.40625 

19 

 

156 121.875 

 

157 122.65625 

20 

 

164 128.125 

 

165 128.90625 

21 

 

172 134.375 

 

173 135.15625 

22 

 

180 140.625 

 

181 141.40625 

23 

 

188 146.875 

 

189 147.65625 
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24 

 

196 153.125 

 

197 153.90625 

25 

 

204 159.375 

 

205 160.15625 

26 

 

212 165.625 

 

213 166.40625 

27 

 

220 171.875 

 

221 172.65625 

28 

 

228 178.125 

 

229 178.90625 

29 

 

236 184.375 

 

237 185.15625 

30 

 

244 190.625 

 

245 191.40625 

31 

 

252 196.875 

 

253 197.65625 

32 

 

260 203.125 

 

261 203.90625 

33 

 

268 209.375 

 

269 210.15625 

34 

 

276 215.625 

 

277 216.40625 

35 

 

284 221.875 

 

285 222.65625 

36 

 

292 228.125 

 

293 228.90625 

37 

 

300 234.375 

 

301 235.15625 

38 

 

308 240.625 

 

309 241.40625 

39 

 

316 246.875 

 

317 247.65625 

40 

 

324 253.125 

 

325 253.90625 

41 

 

332 259.375 

 

333 260.15625 

42 

 

340 265.625 

 

341 266.40625 

43 

 

348 271.875 

 

349 272.65625 

44 

 

356 278.125 

 

357 278.90625 

45 

 

364 284.375 

 

365 285.15625 

46 

 

372 290.625 

 

373 291.40625 

47 

 

380 296.875 

 

381 297.65625 

48 

 

388 303.125 

 

389 303.90625 

49 

 

396 309.375 

 

397 310.15625 

50 

 

404 315.625 

 

405 316.40625 

51 

 

412 321.875 

 

413 322.65625 

52 

 

420 328.125 

 

421 328.90625 

53 

 

428 334.375 

 

429 335.15625 

54 

 

436 340.625 

 

437 341.40625 

55 

 

444 346.875 

 

445 347.65625 

56 

 

452 353.125 

 

453 353.90625 

57 

 

460 359.375 

 

461 360.15625 

58 

 

468 365.625 

 

469 366.40625 

59 

 

476 371.875 

 

477 372.65625 

60 

 

484 378.125 

 

485 378.90625 

61 

 

492 384.375 

 

493 385.15625 

62 

 

500 390.625 

 

501 391.40625 

63 

 

508 396.875 

 

509 397.65625 
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APPENDIX A-4 

This is a list of the Frequencies that belong to X-engine 7 and X-engine 8. 

Each X-engine processes 64 channels. 

Column 1 shows the Channel in the respective X-engine out of the 64 channels. 

Column 3 shows the Channel number for  X-engine 7 out of the total 512 channels.  

Column 4 shows the Frequencies accepted by X-engine 7 in MHz. 

Column 6 shows the Channel number for  X-engine 8 out of the total 512 channels.  

Column 7 shows the Frequencies accepted by X-engine 8 in MHz. 

 

Channel 

 

X ENGINE 7 FREQUENCY 

 

X ENGINE 8 FREQUENCY 

   

(MHZ) 

  

(MHZ) 

0 

 

6 4.68750 

 

7 5.46875 

1 

 

14 10.93750 

 

15 11.71875 

2 

 

22 17.18750 

 

23 17.96875 

3 

 

30 23.43750 

 

31 24.21875 

4 

 

38 29.68750 

 

39 30.46875 

5 

 

46 35.93750 

 

47 36.71875 

6 

 

54 42.18750 

 

55 42.96875 

7 

 

62 48.43750 

 

63 49.21875 

8 

 

70 54.68750 

 

71 55.46875 

9 

 

78 60.93750 

 

79 61.71875 

10 

 

86 67.18750 

 

87 67.96875 

11 

 

94 73.43750 

 

95 74.21875 

12 

 

102 79.68750 

 

103 80.46875 

13 

 

110 85.93750 

 

111 86.71875 

14 

 

118 92.18750 

 

119 92.96875 

15 

 

126 98.43750 

 

127 99.21875 

16 

 

134 104.68750 

 

135 105.46875 

17 

 

142 110.93750 

 

143 111.71875 

18 

 

150 117.18750 

 

151 117.96875 

19 

 

158 123.43750 

 

159 124.21875 

20 

 

166 129.68750 

 

167 130.46875 

21 

 

174 135.93750 

 

175 136.71875 

22 

 

182 142.18750 

 

183 142.96875 

23 

 

190 148.43750 

 

191 149.21875 
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24 

 

198 154.68750 

 

199 155.46875 

25 

 

206 160.93750 

 

207 161.71875 

26 

 

214 167.18750 

 

215 167.96875 

27 

 

222 173.43750 

 

223 174.21875 

28 

 

230 179.68750 

 

231 180.46875 

29 

 

238 185.93750 

 

239 186.71875 

30 

 

246 192.18750 

 

247 192.96875 

31 

 

254 198.43750 

 

255 199.21875 

32 

 

262 204.68750 

 

263 205.46875 

33 

 

270 210.93750 

 

271 211.71875 

34 

 

278 217.18750 

 

279 217.96875 

35 

 

286 223.43750 

 

287 224.21875 

36 

 

294 229.68750 

 

295 230.46875 

37 

 

302 235.93750 

 

303 236.71875 

38 

 

310 242.18750 

 

311 242.96875 

39 

 

318 248.43750 

 

319 249.21875 

40 

 

326 254.68750 

 

327 255.46875 

41 

 

334 260.93750 

 

335 261.71875 

42 

 

342 267.18750 

 

343 267.96875 

43 

 

350 273.43750 

 

351 274.21875 

44 

 

358 279.68750 

 

359 280.46875 

45 

 

366 285.93750 

 

367 286.71875 

46 

 

374 292.18750 

 

375 292.96875 

47 

 

382 298.43750 

 

383 299.21875 

48 

 

390 304.68750 

 

391 305.46875 

49 

 

398 310.93750 

 

399 311.71875 

50 

 

406 317.18750 

 

407 317.96875 

51 

 

414 323.43750 

 

415 324.21875 

52 

 

422 329.68750 

 

423 330.46875 

53 

 

430 335.93750 

 

431 336.71875 

54 

 

438 342.18750 

 

439 342.96875 

55 

 

446 348.43750 

 

447 349.21875 

56 

 

454 354.68750 

 

455 355.46875 

57 

 

462 360.93750 

 

463 361.71875 

58 

 

470 367.18750 

 

471 367.96875 

59 

 

478 373.43750 

 

479 374.21875 

60 

 

486 379.68750 

 

487 380.46875 

61 

 

494 385.93750 

 

495 386.71875 

62 

 

502 392.18750 

 

503 392.96875 

63 

 

510 398.43750 

 

511 399.21875 
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Appendix B 
 
Resource utilization of the Packetized beamformer design. 
 
Design Information 
------------------ 
Command Line   : map -ise ../__xps/ise/system.ise - timing -detail -ol high 
-xe n 
-register_duplication -o system_map.ncd -w -pr b sy stem.ngd system.pcf  
Target Device  : xc5vsx95t 
Target Package : ff1136 
Target Speed   : -1 
Mapper Version : virtex5 -- $Revision: 1.51.18.1 $ 
Mapped Date    : Fri Nov 22 17:44:06 2013 
 
 
 
Design Summary 
-------------- 
 
Design Summary: 
Number of errors:      0 
Number of warnings: 3233 
Slice Logic Utilization: 
  Number of Slice Registers:                33,922 out of  58,880   57% 
    Number used as Flip Flops:              33,916 
    Number used as Latch-thrus:                  6 
  Number of Slice LUTs:                     32,610 out of  58,880   55% 
    Number used as logic:                   28,309 out of  58,880   48% 
      Number using O6 output only:          22,088 
      Number using O5 output only:           2,898 
      Number using O5 and O6:                3,323 
    Number used as Memory:                   3,957 out of  24,320   16% 
      Number used as Dual Port RAM:            544 
        Number using O6 output only:           346 
        Number using O5 and O6:                198 
      Number used as Shift Register:         3,413 
        Number using O6 output only:         3,413 
    Number used as exclusive route-thru:       344 
  Number of route-thrus:                     3,461 
    Number using O6 output only:             3,188 
    Number using O5 output only:               234 
    Number using O5 and O6:                     39 
 
Slice Logic Distribution: 
  Number of occupied Slices:                12,974 out of  14,720   88% 
  Number of LUT Flip Flop pairs used:       42,584 
    Number with an unused Flip Flop:         8,662 out of  42,584   20% 
    Number with an unused LUT:               9,974 out of  42,584   23% 
    Number of fully used LUT-FF pairs:      23,948 out of  42,584   56% 
    Number of unique control sets:           1,166 
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    Number of slice register sites lost 
      to control set restrictions:           2,489 out of  58,880    4% 
 
  A LUT Flip Flop pair for this architecture repres ents one LUT paired 
with 
  one Flip Flop within a slice.  A control set is a  unique combination of 
  clock, reset, set, and enable signals for a regis tered element. 
  The Slice Logic Distribution report is not meanin gful if the design is 
  over-mapped for a non-slice resource or if Placem ent fails. 
  OVERMAPPING of BRAM resources should be ignored i f the design is 
  over-mapped for a non-BRAM resource or if placeme nt fails. 
 
IO Utilization: 
  Number of bonded IOBs:                       188 out of     640   29% 
    Number of LOCed IOBs:                      188 out of     188  100% 
    IOB Flip Flops:                            176 
    Number of bonded IPADs:                     36 out of      50   72% 
    Number of bonded OPADs:                     32 out of      32  100% 
 
Specific Feature Utilization: 
  Number of BlockRAM/FIFO:                     173 out of     244   70% 
    Number using BlockRAM only:                173 
    Total primitives used: 
      Number of 36k BlockRAM used:             155 
      Number of 18k BlockRAM used:              28 
    Total Memory used (KB):                  6,084 out of   8,784   69% 
  Number of BUFG/BUFGCTRLs:                     14 out of      32   43% 
    Number used as BUFGs:                       14 
  Number of IDELAYCTRLs:                         2 out of      22    9% 
  Number of BUFDSs:                              2 out of       8   25% 
  Number of CRC64s:                              6 out of      16   37% 
  Number of DCM_ADVs:                            4 out of      12   33% 
  Number of DSP48Es:                           128 out of     640   20% 
  Number of GTP_DUALs:                           8 out of       8  100% 
  Number of PLL_ADVs:                            2 out of       6   33% 
 
Average Fanout of Non-Clock Nets:                3. 07 
 
Peak Memory Usage:  1851 MB 
Total REAL time to MAP completion:  15 mins 50 secs   
Total CPU time to MAP completion:   15 mins 35 secs   
 
Mapping completed. 
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Appendix C 
 
# This is the Initialization python script for the Packetized Beamformer 
Design. 
 
#!/usr/bin/python 
import katcp, numpy, pylab, time, corr, sys 
device_host     = "roach030167" # This board has X- engine 1 and Xengine 5  
device_host1    = "roach030116" # This board has X- engine 2 and Xengine 6  
device_host2    = "roach030174" # This board has X- engine 3 and Xengine 7  
device_host3    = "roach040235" # This board has X- engine 4 and Xengine 8  
 
device_port    = 7147 
 
#dest_ip  =192*(2**24) + 168*(2**16) + 8*(2**8) + 2 00   
dest_ip  =10*(2**24) + 0*(2**16) + 0*(2**8) + 1    #Modified on 25th 
Oct2013 
fabric_port=60000 
#source_ip= 192*(2**24) + 168*(2**16) + 8*(2**8) + 201 
source_ip= 10*(2**24) + 0*(2**16) + 0*(2**8) + 13   #Modified on 25th 
Oct2013 
mac_base=(2<<40) + (2<<32) 
 
# core name of upper 10Gbe 
tx_core_name1 = 'BEAMFORMER_INCOH1_ten_Gbe_v2' 
# core name of lower 10Gbe 
tx_core_name = 'BEAMFORMER_INCOH_ten_Gbe_v2' 
 
# defining my corr for all roach Boards 
my_corr =corr.katcp_wrapper.FpgaClient(device_host, device_port) 
my_corr1=corr.katcp_wrapper.FpgaClient(device_host1 ,device_port) 
my_corr2=corr.katcp_wrapper.FpgaClient(device_host2 ,device_port) 
my_corr3=corr.katcp_wrapper.FpgaClient(device_host3 ,device_port) 
 
my_corr4 =corr.katcp_wrapper.FpgaClient(device_host ,device_port) 
my_corr5=corr.katcp_wrapper.FpgaClient(device_host1 ,device_port) 
my_corr6=corr.katcp_wrapper.FpgaClient(device_host2 ,device_port) 
my_corr7=corr.katcp_wrapper.FpgaClient(device_host3 ,device_port) 
 
print "beam former" 
#checking whether all roach boards are connected 
while not (my_corr.is_connected() and my_corr1.is_c onnected() and 
my_corr2.is_connected() and my_corr3.is_connected() ): 
    pass 
#added these lines on 12/12/2012. 
print" Successfully Connected to ROACH \n%s\t%s\t%s \t%s\n" 
%(device_host,device_host1,device_host2,device_host 3) 
 
#writing the number of integration cycles on all ro ach boards.It should be 
same for all 8 x-engines. 
 
my_corr.write_int("no_cycle",1) 
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my_corr1.write_int("no_cycle",1) 
my_corr2.write_int("no_cycle",1) 
my_corr3.write_int("no_cycle",1) 
 
 
 
print"Integration time = %f"%(0.163*(10**-3)*10) 
 
print 'Setting Destination IP on transmitter core.. .', 
 
#writing the destination ip in all software registe rs on all roach boards. 
This is for upper X-engine. 
my_corr.write_int("tx_destination_ip_ps_x1",dest_ip ) 
my_corr1.write_int("tx_destination_ip_ps_x1",dest_i p) 
my_corr2.write_int("tx_destination_ip_ps_x1",dest_i p) 
my_corr3.write_int("tx_destination_ip_ps_x1",dest_i p) 
 
#writing the destination ip in all software registe rs on all roach boards. 
This is for lower X-engine. 
my_corr4.write_int("tx_destination_ip_ps_x2",dest_i p) 
my_corr5.write_int("tx_destination_ip_ps_x2",dest_i p) 
my_corr6.write_int("tx_destination_ip_ps_x2",dest_i p) 
my_corr7.write_int("tx_destination_ip_ps_x2",dest_i p) 
 
print "tx_destination_ip_ps=\n%i\n%i\%i\n%i\n%i\n%i \n%i\n%i\n" 
%(my_corr.read_int("tx_destination_ip_ps"), 
                                                
my_corr1.read_int("tx_destination_ip_ps"), 
                                                
my_corr2.read_int("tx_destination_ip_ps"), 
                                                
my_corr3.read_int("tx_destination_ip_ps"), 
                                                
my_corr4.read_int("tx_destination_ip_ps1"), 
                                                
my_corr5.read_int("tx_destination_ip_ps1"), 
                                                
my_corr6.read_int("tx_destination_ip_ps1"), 
                                                
my_corr7.read_int("tx_destination_ip_ps1")) 
 
 
print 'Configuring transmitter core...', 
sys.stdout.flush() 
my_corr.tap_start('tap0',tx_core_name,mac_base+sour ce_ip,source_ip,fabric_
port) 
my_corr1.tap_start('tap0',tx_core_name,mac_base+sou rce_ip+1,source_ip+1,fa
bric_port) 
my_corr2.tap_start('tap0',tx_core_name,mac_base+sou rce_ip+2,source_ip+2,fa
bric_port) 
my_corr3.tap_start('tap0',tx_core_name,mac_base+sou rce_ip+3,source_ip+3,fa
bric_port) 
#NOTE: keep the tg tap number different for ten GbE  v2 blocks belonging to 
the same ROACH board. 
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my_corr4.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+4,source_ip+4,f
abric_port) 
my_corr5.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+5,source_ip+5,f
abric_port) 
my_corr6.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+6,source_ip+6,f
abric_port) 
my_corr7.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+7,source_ip+7,f
abric_port) 
 
print 'done' 
 
print 'Setting-up destination addresses...', 
sys.stdout.flush() 
my_corr.write_int("tx_destination_ip_ps_x1",dest_ip ) 
my_corr1.write_int("tx_destination_ip_ps_x1",dest_i p) 
my_corr2.write_int("tx_destination_ip_ps_x1",dest_i p) 
my_corr3.write_int("tx_destination_ip_ps_x1",dest_i p) 
 
my_corr4.write_int("tx_destination_ip_ps_x2",dest_i p) 
my_corr5.write_int("tx_destination_ip_ps_x2",dest_i p) 
my_corr6.write_int("tx_destination_ip_ps_x2",dest_i p) 
my_corr7.write_int("tx_destination_ip_ps_x2",dest_i p) 
 
#writing the destination port in all software regis ters of all roach 
boards. This is for upper X-engine. 
my_corr.write_int('tx_destination_port_ps_x1',fabri c_port) 
my_corr1.write_int('tx_destination_port_ps_x1',fabr ic_port) 
my_corr2.write_int('tx_destination_port_ps_x1',fabr ic_port) 
my_corr3.write_int('tx_destination_port_ps_x1',fabr ic_port) 
 
#writing the destination port in all software regis ters of all roach 
boards. This is for lower X-engine. 
my_corr4.write_int('tx_destination_port_ps_x2',fabr ic_port) 
my_corr5.write_int('tx_destination_port_ps_x2',fabr ic_port) 
my_corr6.write_int('tx_destination_port_ps_x2',fabr ic_port) 
my_corr7.write_int('tx_destination_port_ps_x2',fabr ic_port) 
 
 
 
 
print 'done' 
 
 
 
 
#resetting 10Gbe core of upper X-engine of all roac h boards  
my_corr.write_int("reset_gbe_ps_x1",0) 
my_corr1.write_int("reset_gbe_ps_x1",0) 
my_corr2.write_int("reset_gbe_ps_x1",0) 
my_corr3.write_int("reset_gbe_ps_x1",0) 
 
 
#resetting 10Gbe core of lower X-engine of all roac h boards  
my_corr4.write_int("reset_gbe_ps_x2",0) 
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my_corr5.write_int("reset_gbe_ps_x2",0) 
my_corr6.write_int("reset_gbe_ps_x2",0) 
my_corr7.write_int("reset_gbe_ps_x2",0) 
#print "reset_gbe_ps= %i" %my_corr.read_int("reset_ gbe_ps_x2") 
 
 
my_corr.stop() 
my_corr1.stop() 
my_corr2.stop() 
my_corr3.stop() 
my_corr4.stop() 
my_corr5.stop() 
my_corr6.stop() 
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Appendix D 
 
// This C code converts the data cpatured by Gulp f rom binary to ASCII// 
// while running specify as following: <name of the  gulp dumped file> 
<pack_size> <scale> <nameof file1> <name of file2> ... <name of file8> 
<name of file to store headers> 
 
#include<stdio.h> 
#include<stdlib.h> 
#include<string.h> 
#include<stdint.h> 
int main(int argc,char* argv[]) 
{ 
//unsigned char *buffer; 
 long lsize; 
int i; 
int k,l; 
 
size_t result; 
size_t scale; 
size_t pack_size; 
 
pack_size = atoi(argv[2]);// input packet size 
printf("pack_size is %d\n",pack_size); 
 
scale = atoi(argv[3]);//input scaling factor 
// create 8 new empty file with the names n1s.txt n 2s.txt ...// 
FILE *ha = fopen("n1s.txt","w");// File will conati n data of X-engine1// 
FILE *ha1 = fopen("n2s.txt","w");// File will conat in data of X-engine2// 
FILE *ha2 = fopen("n3s.txt","w");// File will conat in data of X-engine3// 
FILE *ha3 = fopen("n4s.txt","w");// File will conat in data of X-engine4// 
FILE *ha4 = fopen("n5s.txt","w");// File will conat in data of X-engine5// 
FILE *ha5 = fopen("n6s.txt","w");// File will conat in data of X-engine6// 
FILE *ha6 = fopen("n7s.txt","w");// File will conat in data of X-engine7// 
FILE *ha7 = fopen("n8s.txt","w");// File will conat in data of X-engine8// 
 
FILE *head = fopen("nhs.txt","w");// File will cona tin source and 
destination IP of all data packets received// 
 
//fclose(hd); 
printf("File Name: %s",argv[1]);// argv[1] contains  the name of .dat file 
in which gulp packets are dumped.// 
FILE *file = fopen( argv[1], "r" ); 
 
        /* fopen returns 0, the NULL pointer, on fa ilure */ 
        if ( file == 0 ){ 
        fputs ("File error",stderr); 
        exit (1); 
        } 
        else{ 
        fseek (file , 0 , SEEK_END); 
        lsize = ftell (file); 
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        rewind (file); 
        printf("%ld \n",lsize); 
 unsigned char* buffer = (unsigned char*) malloc(ls ize*sizeof(unsigned 
char)); 
        if (buffer == NULL){ 
        fputs ("Memory error",stderr); 
        exit (2); 
        } 
        else{ 
 
 result = fread(buffer,sizeof(unsigned char),lsize, file); 
 
 printf("fread result   %d\n",result); 
 
for(i=0;i<lsize/pack_size;i++) 
{ 
 
unsigned long int src_ip,file_select; 
unsigned long int temp; 
 
//following for separating source IP and destinatio n IP from the packet 
header.// 
 
for(k = 26;k<27;k=k+8) 
{ 
 
 
if (k==26){ 
        unsigned long int src_ip= 0, des_ip= 0; // the source ip and des 
ip does not fit in 16 bit so we use long int data t ype for that. 
        
  // for source ip 
 
        temp = (unsigned long int) buffer[i*pack_si ze + k]; 
        temp = temp << 24; 
        src_ip += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k + 1]; 
        temp = temp << 16; 
        src_ip += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k + 2]; 
        temp = temp << 8; 
        src_ip += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k + 3]; 
     
        src_ip += ( unsigned long int) temp; 
         
 file_select=src_ip; 
 
        
// for destination ip 
 
        temp = (unsigned long int) buffer[i*pack_si ze + k+4]; 
        temp = temp << 24; 
        des_ip += (unsigned long int) temp; 
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        temp = (unsigned long int) buffer[i*pack_si ze + k+5]; 
        temp = temp << 16; 
        des_ip += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k+6]; 
        temp = temp << 8; 
        des_ip += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k+7]; 
 
        des_ip += ( unsigned long int) temp; 
        
 
// to print to the file containing source addresses  of received packets 
         
 fprintf(head,"%lu\t%lu\n",des_ip,src_ip);  
 
        } 
 
for(k = 42;k<pack_size;k=k+8) //Data in gulp packet  starts at 43rd byte 
gulp packet with header. Each data of 8 bytes(64 bi ts) 
{   // Binary to ASCII conversion 
     if (k<pack_size){ 
        unsigned long int pol0 = 0, pol1 = 0,temp_s hort=0; 
        signed short int pol0_scale = 0, pol1_scale  = 0;temp_short=0; 
    
// for polarization 0 
         
 temp = (unsigned long int) buffer[i*pack_size + k] ; 
        temp = temp << 24; 
        pol0 += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k + 1]; 
        temp = temp << 16; 
        pol0 += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k + 2]; 
        temp = temp << 8; 
        pol0 += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k + 3]; 
      pol0 += ( unsigned long int) temp; 
        if (pol0 > 2147483647) 
        { pol0 = pol0 - 4294967296; 
 } 
        temp_short=(pol0/scale); 
        pol0_scale = (signed short int) temp_short;  
 
//for polarization 1 
 
 temp = (unsigned long int) buffer[i*pack_size + k+ 4]; 
        temp = temp << 24; 
        pol1 += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k+5]; 
        temp = temp << 16; 
        pol1 += (unsigned long int) temp; 
        temp = (unsigned long int) buffer[i*pack_si ze + k+6]; 
        temp = temp << 8; 
        pol1 += (unsigned long int) temp; 
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        temp = (unsigned long int) buffer[i*pack_si ze + k+7]; 
  
        pol1 += ( unsigned long int) temp; 
        if (pol1 > 2147483647) 
        {pol1 = pol1 - 4294967296; 
         } 
         temp_short=(pol1/scale); 
         pol1_scale = (signed short int) temp_short ; 
 
// the following section selects the output file to  which data has to be 
written. 
 
if(file_select == 167772173)//167772173= Souce IP o f X-engine 1// 
// Data of polarisation 1 is printed below. If data  of polarisation 0 is 
required then repalce the command by fprintf(ha1,%h d\n",pol0_scale);  
{ fprintf(ha,"%hd\n",pol1_scale);} 
else 
        if (file_select == 167772174)//167772174= S ouce IP of X-engine 2// 
        { fprintf(ha1,"%hd\n",pol1_scale);} 
else 
        if (file_select == 167772175)//167772175= S ouce IP of X-engine 3// 
        { fprintf(ha2,"%hd\n",pol1_scale);} 
else 
        if (file_select == 167772176)//167772176= S ouce IP of X-engine 4// 
        {fprintf(ha3,"%hd\n",pol1_scale);} 
 
else 
        if (file_select == 167772177)//167772177= S ouce IP of X-engine 5// 
        {fprintf(ha4,"%hd\n",pol1_scale);} 
 
else 
        if (file_select == 167772178)//167772178= S ouce IP of X-engine 6// 
        {fprintf(ha5,"%hd\n",pol1_scale);} 
else 
        if (file_select == 167772179)//167772179= S ouce IP of X-engine 7// 
        {fprintf(ha6,"%hd\n",pol1_scale);} 
else 
        {fprintf(ha7,"%hd\n",pol1_scale);}// print to 8th X-engine's 
file.// 
   
                } 
 
 
        } 
} 
 
 
} 
 
 
} 
   free(buffer); 
} 
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        fclose(ha); 
        fclose(ha1); 
        fclose(ha2); 
        fclose(ha3); 
        fclose(ha4); 
        fclose(ha5); 
        fclose(ha6); 
        fclose(ha7); 
        fclose(head); 
         fclose(file); 
 
  return 0; 
 
} 
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Appendix E 
 
// This C code will interleave all the 8 files. Eac h file belonged to one 
X-engine data// 
 
 
#include<stdio.h> 
#include<stdlib.h> 
#include<string.h> 
#include<stdint.h> 
 
int main(void) 
{ 
 
 
FILE *in1=fopen("n1s.txt", "r");//File containing d ata from X-engine 1// 
FILE *in2=fopen("n2s.txt", "r");//File containing d ata from X-engine 2// 
FILE *in3=fopen("n3s.txt", "r");//File containing d ata from X-engine 3// 
FILE *in4=fopen("n4s.txt", "r");//File containing d ata from X-engine 4// 
FILE *in5=fopen("n5s.txt", "r");//File containing d ata from X-engine 5// 
FILE *in6=fopen("n6s.txt", "r");//File containing d ata from X-engine 6// 
FILE *in7=fopen("n7s.txt", "r");//File containing d ata from X-engine 7// 
FILE *in8=fopen("n8s.txt", "r");//File containing d ata from X-engine 8// 
 
if ((in1 != NULL) && (in2 != NULL) && (in3 != NULL)  && (in4 != NULL) && 
(in5 != NULL) && (in6 != NULL) && (in7 != NULL) && (in8 != NULL)) 
// This if loop checks that there is atleast 1 pack et data in all X-
engines.// 
        { 
                char line1[BUFSIZ]; 
                char line2[BUFSIZ]; 
                char line3[BUFSIZ]; 
                char line4[BUFSIZ]; 
                char line5[BUFSIZ]; 
                char line6[BUFSIZ]; 
                char line7[BUFSIZ]; 
                char line8[BUFSIZ]; 
 
                while ((fgets(line1, sizeof line1, in1) != NULL) && 
(fgets(line2, sizeof line2, in2) != NULL) && (fgets (line3, sizeof line3, 
in3) != NULL) && (fgets(line4, sizeof line4, in4) ! = NULL) && 
(fgets(line5, sizeof line5, in5) != NULL) && (fgets (line6, sizeof line6, 
in6) != NULL) && (fgets(line7, sizeof line7, in7) ! = NULL) && 
(fgets(line8, sizeof line8, in8) != NULL)) 
                {       
                        char *start1 = line1; 
                        char *start2 = line2; 
                        char *start3 = line3; 
                        char *start4 = line4; 
                        char *start5 = line5; 
                        char *start6 = line6; 
                        char *start7 = line7; 
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                        char *start8 = line8; 
                        signed short int 
field1,field2,field3,field4,field5,field6,field7,fi eld8; 
                        int n; 
 
                        while ((sscanf(start1, "%hd %n", &field1, &n) == 1) 
&& (sscanf(start2, "%hd%n", &field2, &n) == 1) && ( sscanf(start3, "%hd%n", 
&field3, &n) == 1) && (sscanf(start4, "%hd%n", &fie ld4, &n) == 1) && 
(sscanf(start5, "%hd%n", &field5, &n) == 1) && (ssc anf(start6, "%hd%n", 
&field6, &n) == 1) && (sscanf(start7, "%hd%n", &fie ld7, &n) == 1) && 
(sscanf(start8, "%hd%n", &field8, &n) == 1)) 
 
 
                        {     // interleaving done here by printing 
channels one below the other in proper order//  
                           
                                 printf("%hd\n", fi eld1); 
                                start1 += n; 
                                printf("%hd\n", fie ld2); 
                                start2 += n; 
                                printf("%hd\n", fie ld3); 
                                start3 += n; 
                                printf("%hd\n", fie ld4); 
                                 start4 += n; 
                                printf("%hd\n", fie ld5); 
                                start5 += n; 
                                 printf("%hd\n", fi eld6); 
                                start6 += n; 
                                printf("%hd\n", fie ld7); 
                                start7 += n; 
                                 printf("%hd", fiel d8); 
                                start8 += n; 
 
                        } 
                         
 
                } 
 
                fclose(in1); 
                fclose(in2); 
                fclose(in3); 
                fclose(in4); 
                fclose(in5); 
                fclose(in6); 
                fclose(in7); 
                fclose(in8); 
  fclose(inter_bin); 
        } 
        return 0; 
} 
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Appendix F 
 
 
// This C code will convert ASCII interleaved file into Pmon compatible 
format. Pmon compatible format is 16 bit signed bin ary// 
 
#include<stdio.h> 
#include<stdlib.h> 
#include<string.h> 
#include<stdint.h> 
 
int main(void) 
{ 
 
 
FILE *rp=fopen("tst1.txt", "r");// give the name of  the File that contains 
interleaved ASCII data 
FILE *wp=fopen("tst7.raw", "w");//give the name of the File that will 
contain interleaved binary data 
 
if ((rp != NULL)) 
{ 
        char line1[BUFSIZ]; 
        while (fgets(line1, sizeof line1, rp) != NU LL) 
         { 
                char *start1 = line1; 
                signed short int field1; 
                int n; 
                 while ((sscanf(start1, "%hd%n", &f ield1, &n) == 1)) 
                { 
 
                       
 
                        fwrite(&field1,sizeof(field 1),1,wp); // fwrite 
writes binary 
                        start1 += n; 
                         
 
                } 
        } 
                fclose(rp); 
} 
return 0; 
} 
 
 
 
 
 
 

 


