
GMRT-TIFR Page 1

1. Introduction

1.1 Introduction to GMRT:
The Giant Metrewave Radio Telescope (GMRT), located near Pune in India, is the world’s
largest array of radio telescopes at meter wavelengths. It is operated by the National Centre for
Radio Astrophysics, a part of the Tata Institute of Fundamental Research, Mumbai.

The GMRT contains 30 fully steerable telescopes, each 45 meters in diameter spread over
distances of upto 25 km. The design of these antennas is based on the `SMART' concept -
Stretch Mesh Attached to Rope Trusses. The reflector made of wire rope stretched between
metal struts in a parabolic configuration. This configuration works fine as the telescope operates
at long wavelengths (21 cm and above). Every antenna has four different receivers mounted at
the focus. Figure 1.1 shows one such antenna. Each individual receiver assembly can rotate,
enabling the user to select any of them for the observation. GMRT antennas operate in five
frequency bands, centered at 153, 233, 327, 610, and 1420 MHz. All these feeds provide dual
polarization outputs. In some configurations, dual-frequency observations are also possible.

Figure. 1.1 Antenna

GMRT-TIFR Page 2

Out of the 30 telescopes at GMRT, fourteen telescopes are randomly arranged in the central
square of 1 km by 1 km in size. Rest sixteen telescopes are arranged in three arms of a nearly
―’Y’-shaped array each having a length of 14 km from the array centre. The positions of the
antennas in the antenna array have been shown in Figure 1.2.

Figure. 1.2 Antenna Array at GMRT

Therefore GMRT can act as an interferometer which uses a technique known as aperture
synthesis to make images of radio sources. The multiplication or correlation of radio signals
from all the 435 possible pairs of antennas or interferometers over several hours will thus enable
radio images of celestial objects to be synthesized with a resolution equivalent to that obtainable
with a single gigantic dish 25 kilometer in diameter! The maximum baseline in the array gives
the telescope an angular resolution (the smallest angular scale that can be distinguished) of about
1 arc-second, at the frequency of neutral hydrogen. To provide seamless coverage from 100 MHz
to 1600 MHz in addition to upgrades to the mechanical and servo control systems to the antenna
and an improved high speed telemetry system for controlling the antennas remotely. This needs a
major upgrade to the backend electronics, two possible solutions to the backend upgrade are
currently being developed – one based on multiple FPGA boards, and second on GPU cluster.

GMRT-TIFR Page 3

Currently, the GMRT is undergoing an upgrade. As part of the upgrade, the GMRT plans to
increase the bandwidth of the GMRT from the present value of 32 MHz to about 400 MHz and
also plans to upgrade the digital backend from GSB (GMRT software Backend) to FPGA and
GPU based backend.

1.2. Introduction to digital backend:

The digital backend is responsible for digital signal processing of the telescopic data used in
interferometer and beamforming modes.
The digital signal is processed through FX Correlator (FX : FFT followed by Multiplier) to
generate cross amplitude and phase information between each pair (baseline) among the 30
antennas to give the visibility information.
This data is used in imaging, continuum and many other astronomical observations.

1.3. Introduction to the project:

The Project of implementing and testing incoherent Packetized Beamformer is a part of the
upgradation process of GMRT Backend system.
In Radio astronomy, beamforming is a technique which is used to get the pulsar profile. It can be
of two types such as, Incoherent beamforming mode and coherent beamforming mode. The
incoherent beamformer adds voltage signals from different antennae and computes the basic self
term of voltage signals of the two polarizations. This incoherent beamformer for 4 antennae and
2 orthogonal polarizations is implemented on a multiple ROACH-boards (FPGA platform) and
tested with proper pulsar source.

1.4. Significance of the project:

Pulsars are weak radio sources, and their individual pulses often do not rise above the
background noise, so even with long base line it appears as a point source. Beamforming is the
standard signal processing technique for its study to get its profile in higher resolution.
Incoherent beamformer exhibits a higher sensitivity by √N times (N= no of antennae). As the
voltage signals of different antennae are squared and added, the incoherent beamformer provides
vital information of the pulsars. So as a part upgradation process of GMRT backend, incoherent
beamformer is implemented on FPGA.

 FPGA is chosen as a hardware platform for its re-configurable features and better computing
resources with lesser power conservation and higher bandwidth compared to the software based
solution.

Within the scope of our project, we need to design the basic hardware and its interfacing utilities
and test it with real time sources. So, the 4 antennae and 2 polarizations incoherent beamformer
is implemented on multiple Virtex-5 pro FPGA (ROACH-board) to verify the functioning of the
incoherent beamforming.

GMRT-TIFR Page 4

1.5. Aim and Objectives of the project:

The aim of this project is to design and implement incoherent packetized beamformer on
multiple ROACH boards (FPGA platform) for 4 antennae 2 polarizations and test the design with
Pulsars to get the pulsar profile.
The objectives of the project are:
• Design and implement the incoherent beamformer for 4 antennae and 2 polarizations on
 multiple FPGA platform (ROACH-board).
• Write scripts for the necessary interfacings of the ROACH-board with host PC.
• Simulation and implementation of design on hardware for verifying design logic.
• Verify the design using sky-test, i.e. testing with signals from radio sources (Pulsar).

1.6. Casper:

The Center for Astronomy Signal Processing and Electronics Research (CASPER) is a global
collaboration dedicated to streamlining and simplifying the design flow of radio astronomy
instrumentation by promoting design reuse through the development of platform-independent,
open-source hardware and software.
The CASPER tool flow is better known as the MSSGE (Matlab/Simulink/System
Generator/EDK) or bee xps tool flow. It is the platform for FPGA-based CASPER development
and is the interface between several design and implementation environments.

Casper design environment in GMRT that is used during the course of this project use
following version of different utility
� Matlab R2008a (v7.6.0)
� Simulink R2008b (v7.2)
� Xilinx System Generator v10.1.3.1386
� Xilinx EDK v11.5
� Xilinx ISE v11.5
� MSSGE libraries

The aim is to couple the real-time streaming performance of application-specific hardware with
the design simplicity of general-purpose software. By providing parameterized, platform
independent "gateware" libraries that run on reconfigurable, modular hardware building blocks,
CASPER abstracts away low-level implementation details and allow astronomers to rapidly
design and deploy new instruments.

CASPER instruments use reconfigurable open-source hardware built around Xilinx FPGAs. The
GMRT uses Virtex 5 SXT95 based standalone FPGA processing board also called ROACH
(Reconfigurable Open Architecture Computing Hardware). Figure 1.3 is an image of one such
ROACH board. The ROACH board also has the
Following features:
• A separate PowerPC runs Linux and is used to control the board

GMRT-TIFR Page 5

• CX4/XAUI/10GbE Networks Interfacing Cards
• ADC2x1000-8: Dual 8-bit, 1000Msps (or single 8-bit 2000Msps), Atmel/e2v
AT84AD001B ADC

Figure. 1.3 Virtex 5 ROACH board

GMRT-TIFR Page 6

2. Theoretical concepts
2.1. Interferometry and correlator:

Interferometry is a technique in which waves are superimposed in such a way that one can
analyze wave property from residual phase and spectrum. Interferometry makes use of the
principle of superposition to combine waves in a way that will cause the result of their
combination to have some meaningful pattern that is diagnostic of the original state of the waves.
This works because when two waves with the same frequency combine, the resulting pattern is
determined by the phase difference between the two waves— waves that are in phase will
undergo constructive interference while waves that are out of phase will undergo destructive
interference.
 A radio interferometer measures the mutual coherence function of the electric field due to a
given source brightness distribution in the sky. The antennas of the interferometer convert the
electric field into voltages. The mutual coherence function is measured by cross correlating the
voltages from each pair of antennas. The measured cross correlation function is also called
Visibility. In general it is required to measure the visibility for different frequencies (spectral
visibility) to get spectral information for the astronomical source.

The cross correlation between two signals �1 � and �2 �
 �� � =< �1 � �2 � + � >

Where � the time delay between the two signals and angle brackets is indicates averaging in
time.

According to Wiener-Khinchin theorem which says, the power spectral density (PSD) of a
stationary stochastic process is defined to be the FT of its auto-correlation function that is if
 �� � =< �1(�)�2(� + �) >
 then power spectral density function �� � is

From the property of Fourier transform we have

2.2. Beamforming- coherent and incoherent:

Pulsars are the weak radio sources, so their individual pulses often do not rise above the
background noise level. Beamforming is the basic technique used for their studies. Beamforming
is a signal processing technique used in sensor arrays for directional signal transmission or
reception. This is achieved by combining elements in the array in such a way that signals at
particular angles experience constructive interference while others experience destructive
interference. In beamformer, the antennae signals can be added coherently or incoherently.

GMRT-TIFR Page 7

Incoherent Beamforming:

• In incoherent beamformer, the voltage signals are firstly converted into power spectra.
Then the power signals from the N dishes are combined to give the single incoherent
beam. As the power spectra of the signals are added, the phase information is lost and no
need of phase corrections.
• Root of N improvement in sensitivity.
• Beamwidth of single antenna.
• Application in large scale pulsar search
• The mathematical representation of the incohernt beamformer:

�� = (�1
2 + �2

2)
 This approach is used in the all the design in the course of this work.

Coherent beamformer:
• Voltage signals from the N dishes are combined to give the single coherent beam. As the
 voltages are added, it should be in phase with each other to get the resultant coherent
signal referred as beam.
• N times improvement in sensitivity
• Beamwidth becomes narrower than the single antenna by nearly 1/N times.

• Application in studies individual known pulsars with its polarimetry studies.
• The mathematical representation of the coherent beamformer

�� = (�1 + �2)2

2.3. Pulsar observations requirements:

A pulsar is a rapidly rotating neutron star, highly magnetized which emits electromagnetic
radiation beams from its magnetic poles as it rotates. The radiation is visible to us only if one of
the poles points toward the earth. This appears to us as a very regular series of pulses with a
period beam as low as milliseconds. The compact nature of its emission makes it a point source
even for largest baseline on the earth.

Figure 2.1: Radiation from pulsar

GMRT-TIFR Page 8

3. Packetized Beamformer Specifications

� Number of antennas: 4

� Polarization: Both polarization

� Number of spectral channels: 512

� Number of F engines: 4

� Number of X-engines: 8

� Number of spectral channels per X-engine:64

� Networks used: 1Gbps, XAUI link and 10 Gb Ethernet.

� Clock Frequency: 800 MHz

� Bandwidth : 400 MHz

� Base integration time: 0.163 milliseconds

� Data rate from 1 X-engine: 27.19 Mbps.

� Data rate from 8 X-engines: 223.2 Mbps.

GMRT-TIFR Page 9

4. Description of the project work:

4.1. Four Antenna Packetized Beamformer Design:

4 antenna packetized beamformer uses four F-engines and 8 X-engines.
Figure 3.1 shows the function performed by an F-engine and also shows after which stage the
signal for beamforming is taped.

Figure 4.1. Functions performed by an F-engine

Each block mentioned Figure (3.1) is explained in brief below:

1. ADC: The ADCs interfaced to the ROACH board are ADC2x1000-8. They normally operate
at 800MHzand give an 8 bit output through 4 channels each operating at 200MHz. This is done
as the FPGA operates at 200MHz. In our design, the ADC is running at 400MHz clock
frequency.

GMRT-TIFR Page 10

2. Delay: The radio sources in the sky are in motion over the sky. This differential change in
position of the radio sources with respect to the antennas gives some delays. Other than that, the
propagation delays from the antennas to the receiver are also considered. The whole delay that
need to corrected for proper phasing is divided into two parts:
a. Integral multiple of clock is implemented in course delay block.
b. Fractional delay is implemented in fine delay fringe stop block.
The data rate at the output will be 4 channels of 8 bits at 200MHz.

3. PFB (Polyphase Filter Block) block: The polyphase filter bank implements a hamming
window. The PFB is used to reduce spectral leakage and to increase signal to noise ratio. The
data rate at the output will be 4 channels each of 18 bits at 200MHz.

4. FFT (Fast Fourier Transform): The FFT block used is FFT Biplex Real 4x (real-sampled
biplex FFT). This block computes the real-sampled Fast Fourier Transform using the biplex FFT
algorithm to use a complex core to transform two real streams. The data rate of operation at FFT
output is 36 bits each at 400MHz. One of the streams gives even channels while the other gives
odd channels. Each channel consists of an 18 (fix 18_17 format)bit real part and an 18 bit
imaginary part.

5. Fine delay fringe stop Block: Fringe delay appears due to the down conversion of the RF
signal to the baseband signal. The delay values are compensated for baseband signal but this give
a drift in phase for RF signal. To compensate this drift in phase fringe stop is used. Using fine
delay fringe stop block we can apply maximum 1 clock delay.

6. Equalizer block: This block scale down the amplitude of incoming from the channels by a
given factor to avoid the over flow during correlation and integration. The scaling factor depends
on the integration time and power level of the signal. This block casts the 36 bits input data into
8 bits data so that the bit growth during accumulation does not overflow 32 bits.

7. Beamformer and Integration block: The beamformer block in the design performs the squaring
of voltage of a channel and adds it to the square of voltage from other antennas. Its working is
explained in detail in section 3.2. The output is all the self-correlated data. This beamformer data
is transmitted using 10GbE so that host PC can read the data and store it on a disk for further use.

8. Integration time = (No. of FFT cycle)*(No of FFT point)/(clock frequency)

9. Data rate= packet size/integration time.

GMRT-TIFR Page 11

4.2 BEAMFORMER SUBSYSTEM FLOWCHART

Figure 4.2 illustrates the signal flow of the beamformer subsystem.

The flow diagram is divided into 2 parts : PART A & PART B

Figure 4.2: Flowchart of Beamformer Subsystem

GMRT-TIFR Page 12

4.3.BEAMFORMER SUBSYSTEM DOCUMENTATION

 Figure 4.3 shows the block diagram of BEAMFORMER_INCOH subsystem:

PART A:

Figure 4.3 Block diagram of Beamformer Subsystem:Part A

GMRT-TIFR Page 13

BLOCK DIAGRAM

PART B:

Figure 4.4 Beamformer Subsystem Block Diagram: Part B

GMRT-TIFR Page 14

4.3.1. INPUT TO THE SUBSYSTEM:

Figure 4.5 Position of the Incoherent Beamformer subsystem in the Packetized Correlator Design

The Beamformer subsystem comes after the Packet reorder block. Packet reorder block is the
first part of an X-engine. It functions in the following manner:

The input signal is given to the roach boards acting as the F engine. The signal initially goes
through an ADC and then an FFT is taken. The data from 512 channels of the F- engine is passed
on to the X- engine.

All 512 channels are not processed by a single X- engine but in fact are distributed among the 8
X-engines of the system. Each X-engine takes responsibility for processing only a certain
number of channels. 512 channels distributed among 8 engines implies that each X-engine
processes 64 channels individually. This means every 8 th channel is processed by the same X-
engine.

For eg. X engine 1: processes Channel 0, Channel 8,Channel 16………….Channel 504.

 X engine 2: processes Channel 1, Channel 9, Channel 17………….Channel 505.

 X engine 3: processes Channel 2, Channel 10, Channel 18………….Channel 506.

X engine 4: processes Channel 3, Channel 11, Channel19………….Channel 507.

GMRT-TIFR Page 15

 X engine 5: processes Channel 4, Channel 12, Channel 20………….Channel 508.

X engine 6: processes Channel 5, Channel 13, Channel21………….Channel 509.

 X engine 7: processes Channel 6, Channel 14, Channel 22………….Channel 510.

X engine 8: processes Channel 7, Channel 15, Channel23………….Channel 511.

Each X-engine processes only it’s own set of channels irrespective of the antenna that the input
is coming from.

There is a checker within each X-engine which checks if the incoming channel belongs to it’s
own set of channels. If it does belong then the X- engine accepts the data and passes it on to the
beamformer subsystem for further processing.

If the incoming channel does not belong to it’s own set of channels it does not accept the data
and instead sends it to the 10 Gbe switch which routes it to the correct X- engine.

Figure 4.6 Working of first part of X-engine

GMRT-TIFR

The inputs to the beamformer subsystem are the following three signals:

1. Data_valid signal: Boolean signa
is valid.

2. Sync signal: For synchronization between different X
3. Input data: 16 bit data.

The input data comes in the following format:

Figure 4.7

4.3.2. WRITIG THE DATA TO RAM

The inputs to the beamformer subsystem are the following three signals:

: Boolean signal; when high the incoming data at the input data port

: For synchronization between different X-engines.
: 16 bit data.

The input data comes in the following format:

4.7 Incoming Data format at the input data port

2. WRITIG THE DATA TO RAM

Figure 4.8 Writing Data to the RAM

Page 16

l; when high the incoming data at the input data port

format at the input data port for X-engine1

GMRT-TIFR Page 17

1. Antenna and corresponding RAM: The incoming data is written to four single port RAMs.
Each of these RAMs is 16 bit wide and has 128 address locations. Each one of these RAMs
represents the corresponding antenna to which the data belongs. It is as follows.

NUMBER OF ANTENNA FROM WHICH
THE DATA IS COMING

THE RAM TO WHICH THE DATA IS
STORED

Antenna 1 RAM 1
Antenna 2 RAM 2
Antenna 3 RAM 3
Antenna 4 RAM 4

2. Generating address for RAM: A 9 bit counter gives the address. Only the 7 LSB are used to
generate the address for a particular RAM. The 2 MSB are used for generating write enable
which is explained in the next point. This counter has reset and enable ports. The counter is reset
at every sync and it is enabled only when the data valid signal goes high.

3.Generating the write enable signal for RAM: One RAM has to be selected based on to which
antenna the incoming data belongs to. This is done by using the 2 msb. Based on one them
output of the selection block for only one BRAM is made high.

 VALUE OF TWO MSB OF THE ADDRESS THE RAM SELECTED
00 RAM 1
01 RAM 2
10 RAM 3
11 RAM 4

Then this output and data_valid are ANDed together and that is given to the write enable of that
particular RAM.

4.Input data: The data comes as 128 time stamps for one channel from each antenna. This data is
written into the single port RAM whose write enable is high.

4.3.3 DELAY SECTION:

1. Need: As seen earlier (in Section 4.3.1)the format in which the incoming data arrives at the
data input port of the beamformer subsystem. The data from antenna 1 arrives first and this is
followed by data from antennas 2, 3 and 4 sequentially. There are 128 timestamps of data from
each antenna. So data for antenna 2 timestamp 1 comes 128 clock cycles after that of antenna 1
time stamp 1. As the data comes sequentially, data for antenna 3 timestamp 1 comes 256 clock
cycles after that of antenna 1 time stamp 1 and data for antenna 4 timestamp 1 comes 384 clock
cycles after that of antenna 1 time stamp 1. In order that the data from all the antennas arrives at
the same time for the next step of processing these delays are used.

GMRT-TIFR Page 18

2. Implementation: The timestamps from all antennas are made to arrive with the timestamps
from antenna4 by delaying them. In order to provide these delays 3 separate delay blocks are
used for antenna 1, 2 and 3. The data from antenna 4 is not delayed.

ANTENNA NUMBER DELAYED BY
Antenna 1 384
Antenna 2 256
Antenna 3 128

The delay_bram block from the CASPER DSP Block set is used here as the delay block

4.3.4. SELF-CORRELATION

This is done separately for each antenna. Therefore we have four correlation subsystems used in
the design.

1. Separation of 16 bit input data: The 16 bits of input data contain data for both polarizations.
The bottom 8 bits consist of data for polarization 0 and the top 8 bits consist of data for
polarization 1. These 8 bits are contain of real and imaginary parts of the data as can be seen
from the figure bellow.

Figure 4.9 Format of input data

The separation of 16 bits data of the 128 time stamps is done sequentially. The 16 bit data is
separated using slice block from the Xilinx simulink library. The processing of the two
polarization has been done separately and in parallel here onwards.

2.Squaring and Adding: As it is an imaginary number, the square of an imaginary number is
done as follows:

(a+ib)(a-ib)*=a2+b2. We have used the multiplication block mult from the Xilinx simulink
library for squaring and AddSub block from the Xilinx simulink library for addition. For a
particular antenna, 128 time stamps are squared and added sequentially.

GMRT-TIFR

4.3.5. ADDING DATA FROM ALL 4 ANTENNAS

For each antenna 2 outputs come out of the correlator subsystem. One is for polarization 0 and
the other one is for polarization 2. Each of them gives out 128 timestamps of correlated data
sequentially.

Now, the data from all the four antennas is added together.
simulink library for addition. The

Figure

4.3.6. CREATING ONE VALUE OF 128 TIME STAMP VALUES

The subsystem 128 timestamp_to_1_val

Figure 4.11

5. ADDING DATA FROM ALL 4 ANTENNAS

For each antenna 2 outputs come out of the correlator subsystem. One is for polarization 0 and
the other one is for polarization 2. Each of them gives out 128 timestamps of correlated data

Now, the data from all the four antennas is added together.AddSub block from the Xilinx
rary for addition. The figure 4.8 illustrates the addition.

Figure 4.10 Adding data from all antenna

6. CREATING ONE VALUE OF 128 TIME STAMP VALUES

128 timestamp_to_1_val subsystem does this operation.

Figure 4.11 Position of 128 timestamps_to_1_val subsyste

Page 19

For each antenna 2 outputs come out of the correlator subsystem. One is for polarization 0 and
the other one is for polarization 2. Each of them gives out 128 timestamps of correlated data

block from the Xilinx

_to_1_val subsystem

GMRT-TIFR Page 20

1.Input to this subsystem: The following 3 signals are the input to this system.

1. 128 timestamp data that comes sequentially at the input.
2. The sync signal that comes as an input to the Beamformer subsystem.
3. The control_acc signal generated.

2. Generation of control_acc signal:

This signal has been derived inside the subsystem. This signal goes high every time when
timestamp 128 from antenna 4 for every channel arrives at the input. (i.e. when all 512
timestamps which represent 1 channel have arrived at the input.)

This signal is generated as follows:

Figure 4.12 Generation of control_acc signal

3.Internal Structure of 128 timestamp_to_1_val subsystem:

Figure 4.13 Internal structure of 128 timestamps_to_1_val block.

GMRT-TIFR Page 21

1) Logic Used: The addition of 128 timestamps gives us the value for 1 channel. But next time
when 128 timestamps come at the input they belong to a different channel. So a new addition has
to begin after 128 time stamps belonging to one channel have been added.

A multiplexer has been used for to serve this purpose. After every 128 clock cycles, 0 is selected
as the second input to the adder. First input to the adder is the incoming timestamp data.

If the incoming time stamp data belongs to the same channel then the adders output of previous
cycle is used as a second input to the adder.

2) Generation of pulse signal of period 128 clock cycle:

Where is it used: This signal is used as a select signal to the multiplexer Mux, which selects
between 0 and the previous output of the adder, to be the second input to the adder.

Why period of 128?: A period of 128 is selected as we want to add 128 timestamps.

3) Use of register: At the output of this subsystem we need only one value and that value should
be addition of all correlated 128 timestamp values.

At the output of the adder at every clock cycle we have addition of the time stamps. But only at
one particular cycle the output of the adder will have the addition of all correlated 128
timestamps. It is this value we desire. Whenever the control_acc signal goes high we have this
value at the output of the adder.

Hence, we have connected control_acc signal to the enable port of the register so that only the
desired value is passed to the next stages.

Register used here is the Xilinx Register from Xilinx Blockset ant the multiplexer used is
Xylinx Bus Multiplexer from Xilinx Blockset

3.Outputs of this subsystem: The two outputs of this subsystem are the val1 and control _acc1
signal. Val1 is the value that is obtained by adding all the 128 timestamps of that particular
channel. i.e. val1 is the channel value. control_acc1 is just the control_acc signal delayed by 4.

4.3.7. Accumulation of Sync cycles:

Sync cycle_accumulation subsystem is used for this purpose. This block is used to integrate
multiple number of Sync cycles so as to obtain an averaged value of the incoming data.

The 3 inputs coming into the subsystem are:

1. DATA_INPUT
2. CONTROL_ACC
3. SYNC

GMRT-TIFR Page 22

The outputs coming out of the subsystem are:

1. INTEGRATED_CHANNEL_DATA
2. TX_VALID
3. END_OF_FRAME

The position of this subsystem in the design of the beamformer subsystem is as shown in the
following diagram.

**Position in the flow of design

We have divided the subsystem into 3 main parts in order to explain the flow of the design
through it.

1. Generation of end of cycle signal:

This part depends on sync signal.

Figure 4.14 Generation of end_of_cycle

GMRT-TIFR Page 23

A variable “number of cycle for integration” is provided by the user through a software register
so as to specify the number of cycles for which we want to integrate the channel data. It is
configured through the Python script.

 Let us say the value in the software register is given as n.

 The Sync signal is used to enable a counter, when the value of this counter equals the “number
of cycles for integration” provided in the software register we get a high pulse. This high pulse

indicates that n cycles have been integrated. Thus this high pulse signal is called to the “end of

cycle” signal. This signal is also used to reset the counter so that the counting for next cycle can
begin.

2. Generation of new-accumulation,tx-valid,end of frame and we-
accumulator signals:

This part depends on control_acc and the end of cycle signals.

Figure 4.15 Generation of Tx_valid and end of frame

Generation of these signals:

Counter 1 is enabled by the “CONTROL_ACC” signal & reset by the “End of cycle” signal that
was obtained in the first system. The output of this counter is given to Relational Operator 1.
Relational Operator 1 compares this value with 63, as long as this value is less or equal to 63 we
get a high pulse.

GMRT-TIFR Page 24

Counter 2 has only an Enable & no reset & even this counter is enabled by using the
“CONTROL_ACC” signal. The output of this counter is given to Relational Operator 1.
Relational Operator 1 compares this value with 63, as long as this value is less or equal to 63 we
get a high pulse.

The ouput of Relational Operator 2 is inverted. This inverted output is AND’ed with the output
of Relational Operator 1. The output of this AND gate is given to a negative edge block. The
output of this block is our “End of Frame signal”. The output of this negative edge block is given
to a PULSE EXTENDER block. This output of this block is passed ahead to the
“New_Accumulation” signal.

The output of Relational Operator 1 is AND’ed with the “CONTROL_ACC” signal and the
output of this AND gate is AND’ed with the inverted output of Relational Operator 2 mentioned
earlier. This is our “TX_VALID” signal.

Use of these signals:

We-accumulator: This signal is nothing but the control_acc signal that comes into the 2^15 cycle
accumulator subsystem. This signal is used as a write enable signal for PORT A and PORT B of
the dual port RAM. There is delay difference between enable of port A and port B.

New-accumulation: This signal is the select signal to the Mux before the adder in the part 3 of

this subsystem. This signal stays high for the entire duration of cycle 1 of every n cycle

integration. After that it stays low till the integration of n cycles is completed.

Tx-valid: The “TX_VALID” signal is very important for transmission over 10GbE. When this
signal is high the core of the 10GbE accepts the data into the buffer. So, in our case every time

addition of n cycles of channel values of the comes out of the PORTA of the dual port RAM,

this signal goes high. That is, it is only in the last cycle that is nth cycle that we have the values

that we want to transmit to the 10GbE block.

End of Frame: The “End of Frame” is a very important signal from the point of view of 10GbE.
The End of Frame signal should go high when the last data of that particular packet comes to the

data input port of the 10GbE. So, in our case when addition of n cycles of channel number 63

data values values comes out of the PORT A of the dual port RAM, this signal goes high That

is, it is only in the last cycle, that is nth cycle, that we channel number 63 data comes out of port

A this signal goes high

When the “End of Frame” signal is received, the packet of data get transmitted over the Ethernet.
“End of frame” signals the transceiver to begin transmitting the buffered frame.

GMRT-TIFR Page 25

3. Integration of multiple 2^15 cycles.

We have used a Dual port RAM for carrying out the integration of multiple cycles.
This dual port RAM is 32 bit wide and has 64 address locations.

This part is further divided into 2 parts.

1) Address Generation for Port A and Port B.

This depends on both SYNC as well as CONTROL_ACC

A Dual Port has 2 output ports A & B and requires 6 signals at it’s input.

ADDR_A(Address location for Data in Port A),DIN_A(Input data for Port A), WE_A(When this
signal is high the Data pointed by DIN_A is written into the address pointed by ADDR_A),
similarly it also possesses ADDR_B, DIN_B, WE_B. These are for writing into Port B.

Figure 4.16 Generation of address for dual port RAM.

The ADDR_A is generated by a counter which is reset by SYNC signal & enabled by the
“CONTROL_ACC” signal. Delays are adjusted accordingly. ADDR_B is then derived from
ADDR_A as shown in the above figure.

The depth of the RAM used is 64.

We require ADDR_B to be differing from ADDR_A by the value 1. When ADDR_A is 0,
ADDR_B is 1. When ADDR_A is 1, ADDR_B is 2 and so on. When ADDR_A goes to 63
ADDR_B goes to 0(63+1=64(1000000) in 6 bits (000000)). The addition operation is done by an
adder which uses wrap around mode in order to give us the above result. The following table
illustrates the same.

GMRT-TIFR Page 26

ADDRESS OF PORT A (ADDR_A) ADDRESS OF PORT B (ADDR_B)
0 1
1 2
2 3
. .
. .
. .
63 0

2) Actual Integration done in dual port RAM:

This part needs the following signals:
 Data Input Signal,we_acc,new_acc,addr_a,addr_b.

Figure 4.17 Accumulation using Dual Port RAM.

The NEW_ACCUMULATION that was obtained in the 2nd system is used as a Select signal for
a MUX to choose between the output of Port B and a constant of Value 0.The logic used for
integration is as follows:

Let us consider the integration of first n cycles.

Suppose in Cycle 1 the data for 64 channels comes into the system & in the next cycle i.e. Cycle
2 a completely new set of data for 64 channels came into the system. Subsequently in Cycle 3

the system receives a third set of data for 64 channels and so on till the nth cycle. We want the

output of our system to be the addition of these n cycles. This can be accomplished as follows.

GMRT-TIFR Page 27

At the start of cycle 1 the “NEW_ACCUMULATION” signal selects the constant value 0 (input
at port 1 of MUX) and this goes to the second input of adder for the addition operation. The data
keeps streaming into the first input of the adder for the addition operation. Since the value at
second input is 0 the value at first input of adder gets added by 0 only and hence moves to the
output of the Addition operation without a change. This data is directly written to the PORT A of
the DUAL PORT RAM. This “NEW_ACCUMULATION” stays high for all the channels for
every 1st cycle of integration.

As was defined earlier the address at PORT B of the DUAL PORT RAM differs from address at
PORT A of the DUAL PORT RAM by 1. At the end of first cycle addr_b will be pointing to
address0 of the dual port RAM and addr_a will be pointing to address 63.

Let us now consider the start of 2nd cycle:

The “NEW_ACCUMULATION” signal is designed that it now selects the value at Port 0 of the
MUX. This is actually the output of Port B from the RAM. Earlier addr_B was pointing to
address 0 then at the port B output contains the data for channel 0.Now this value moves on to
the second input of the addition operation block.While at the second input of the adder we have
the 2nd cycles input data for channel 0.These 2 values get added by the Addition Operation Block
& moves onto the input at DATA_A.

Thus in general it can be summarized as, the value of a certain channel at the first input of the
Addition operation block is it’s value in the 2nd cycle & the value of in 1st cycle comes at second
input of the Addition operation block. Now in the 3rd cycle, the addition of the values of the 1st&

2nd cycle get added to the now incoming data of the 3rd cycle, in the nth cycle the value at second

input of the adder is the addition of all the previous cycles of that channel and at the first input of

the adder the incoming data is the value of that channel in the nth cycle.

This can be done for any number of cycles that the user wants to integrate.

Once this number has been reached, the Output of the Dual Port RAM contains values that are to
be sent forward to the Packetization stage.

NOTE: This sync cycle accumulator works perfectly for 1 cycle of integration i.e. base
integration. But for greater number of integrations there are some unexpected drops in the output.
These have been removed using the logic of the on-board integrator given in the Add-on
section(Chapter 9) of this report.

4.3.8. PACKETIZATION STAGE :

1) Requirements of 10GbE block: We have input data in the form of 16 bits which contains
information from Polarization 0 and Polarization 1. This data gets split into the respective
Polarizations and independent parallel processing takes place till this stage. At the Packetization

GMRT-TIFR Page 28

stage the data is packetized according to the requirements of the 10GbE NIC. The 10GbE block
accepts only a 64 bit wide data stream with user-determined frame breaks.

2) Formation of 64 bits wide data: The data from both polarizations is 32 bit wide. Both
polarizations are concatenated to form a width of 64 bits. Then this 64 bits wide data is stored in
a Single port RAM before sending it to the 10GbE block. Then 10GbE block wraps this data
stream in a UDP frame for transmission. The block used for concatenation is the Concat block
from Xilinx blockset in the Simulink library.

Figure 4.18 Temporary storage before 10GbE block.

3)The 10GbE setup: The 10GbE block requires inputs as data, reset, tx_valid, tx_dest_ip,
tx_dest_port ,tx_end_of_frame. Out of these tx_end of frame, tx_valid and tx_data are generated
inside the BEAMFORMER_INCOH subsystem.

For the reset, tx_dest_ip and tx_dest_port software registers are present in the design. These
software registers are configured via a python script. The following diagram shows the 10GbE
setup within the design. The 10GbE block used is the ten_Gbe_v2 block from the BEE_XPS
System Blockset in the Simulink library.

GMRT-TIFR

Figure 4.19

Figure 4.18 shows the signals that are given to the 10 GbE block and the relationship between
them.

4)UDP packet: The 10GbE block sends a out a UDP Packet. Packet Format that is transmitted
over 10GbE is as follows:

Figure 4.19 10GbE setup in the design.

Figure 4.18 shows the signals that are given to the 10 GbE block and the relationship between

Figure 4.20 Signals to the 10GbE.

block sends a out a UDP Packet. Packet Format that is transmitted

Page 29

Figure 4.18 shows the signals that are given to the 10 GbE block and the relationship between

block sends a out a UDP Packet. Packet Format that is transmitted

GMRT-TIFR Page 30

Figure 4.21 UDP packet

And the data in the UDP packet is as shown in figure 4.20 :

Figure 4.22 Data in the UDP packet.

GMRT-TIFR Page 31

On a roach board, there are two X-engines; therefore there are two BEAMFORMER_INCOH
subsystems on a single roach board. The 10GbE for the upper subsystem gives the output at
10GbE port 2 of the roach board and the lower subsystem gives the output at 10GbE port1 of the
roach board.

GMRT-TIFR Page 32

5. Calculations for Packetized
Beamformer

5.1 NUMBER OF BITS CALCULATION:

(NOTE: Where ever we say integration it refers to the 2^15 cycle accumulation.)

The following calculation is done for one polarization. The same is true for the next.

1)The 16 bits input data has the following content in it.

We separate the real and imaginary parts of each polarization.

2) Then,

For each timestamp we do the following:

R2+I2.

Now the real part consists of 4 bits and the imaginary part consists of 4 bits.

So, the maximum value for each one of them will be:

Rmax=1111, Imax=1111.

That is Rmax= Imax=16.

3) Now we have to square each one of them:

So, it will be: (Rmax)
2=(Imax)

2= 256.

Therefore the number of bits required to represent this maximum value will be 8 bits.

4) Now in the next step we have to add the real part square and the imaginary part square.

GMRT-TIFR Page 33

So, ((Rmax)
2+(Imax)

2)=256+256=512.

Therefore the number of bits required to represent this maximum value will be 9 bits.

5) In the next stage we have to add all 128 timestamps value and make one value out of them.

So, if all the 128 time stamp values have maximum value then the value of addition will be:

128*((Rmax)
2+(Imax)

2)= 128*512=65536.

Therefore the number of bits required to represent this maximum value will be 16 bits.

This value represents the value for 1 channel without integration.

Therefore 16 bits would be enough to represent the channel data values without
integration.

The same is true for other polarization.

5.2 NUMBER OF INTEGRATION CYCLES:

From the above calculation, we know that the maximum value for 1 channel can be represented
in 16 bits.

But we are using 32 bits for representing the channel data for one polarization.

Therefore the maximum number of integrations that can be done are :

(232) ÷ (216) = 216.

Therefore we conclude that the maximum number of integrations that we can do is 216=65536.

(NOTE: Following calculations have been done for 1 X-engine.)

5.3 INTEGRATION TIME CALCULATION:

In one sync cycle, we have 128 time samples for each channel are received from 4 antennas. In
one sync cycle 64 channels are received by one X engine.

Therefore we need 128*4*64 =32768 clock cycles.

The operating frequency of ROACH board is 200 MHz .Therefore, one clock cycle time period
is 5nanosecond.Total time for one sync cycle to be completed = 32768 *5ns
=0.163millisecond(163 microseconds.)

If integrate further, then for 10 cycles the time taken would be 163 microsecond *10(1.63
milliseconds.)

GMRT-TIFR Page 34

 These values have been verified with the wireshark software . As a packet is sent out after the
specified numbers of integration cycles have been completed.

The following image is a wireshark snapshot for base integration . The leftmost column displays
the time at which the packet arrives from the X-engine.

It is 163 micrsecond s*1(0.163milliseconds).

Figure 5.1 Wireshark snapshot for 1 integration cycle.

The following image is a wireshark snapshot for 2 integration cycles . The leftmost column
displays the time at which the packet arrives from the X-engine.

It is 163 micrsecond s*2=0.326milliseconds.

Figure 5.2 Wireshark snapshot for 2 integration cycles.

GMRT-TIFR Page 35

The following image is a wireshark snapshot for 10 integration cycles . The leftmost column
displays the time at which the packet arrives from the X-engine.

It is 163 micrsecond s*10(1.63milliseconds.)

Figure 5.3 Wireshark snapshot for 10 integration cycles

5.4 DATA RATE CALCULATION:

The data that goes into one packet is as follows:

GMRT-TIFR Page 36

The minimum integration i.e. only 1 cycle of 2^15 is taken into consideration then every 0.163
millisecond (i.e. 163 microsecond) , a packet is transmitted from the X-engine. The data packet
that is sent over the 10Gbps has the following format:

There are two options for capturing the data packets via Gulp. One option is to capture with the
header and another without header. We will be calculating the data rate for both the options:

1) Without header:

Every 163 microsecond 1 packet of 512 bytes is sent out of one X-engine.

Therefore in 1 second 3.14 Mbytes are transferred.

 Data Rate = 3.14 Mbytes * 8 (to convert to bits per second)

 =25.13 Mbps.

2) With Header:

Every 163 microsecond 1 packet of 554 bytes is sent out of one X-engine.

Therefore in 1 second 3.398 Mbytes are transferred.

Data Rate = 3.398 Mbytes * 8 (to convert to bits per second)

 =27.19 Mbps.

GMRT-TIFR Page 37

6. Depacketization and Post-Processing

6.1 DEPACKETIZATION:

This stage further consists of two parts.

1. Converting to ASCII: The data packets captured by gulp are in binary format.
These are converted into ASCII format. Further Polarization 1 and Polarisation 0
data is separated.

2. Separating into 8 files: Gulp captures packets that are sent over 10Gb Ethernet.8
Different roach Boards are transmitting packets over a single 10Gb Ethernet.
Hence these received packets have to be separated depending on the X-engine to
which has transmitted that particular packet.

6.2 POST-PROCESSING:

In post processing, the data received from all the 8 X-engines separately, has to be interleaved in
a particular order so as to get the entire spectrum of 512 channels. Section 6.3 explains both the
Separation into 8 files and interleaving in depth.

6.3 LOGIC USED FOR SEPARATION AND INTERLEAVING:

The Packetized Beamformer design described here has the following specifications:

1. Number of spectral channels: 512
2. Number of X-engines: 8
3. Number of channels processed by each X-engine: 64.

Each X-engine receives data of only those 64 channels which it has programmed to process.
After processing this data, each X engine sends out a packet which contains the channel data of
these 64 channels. These packets are sent over a single 10GbE connection.But the channels that
each X-engine receives are not consecutive. They are in the following format (Table X).

Sr. No. Channel Numbers for each X-engine:
 X-engine1 X-engine2 X-engine3 X-engine4 X-engine5 X-engine6 X-engine7 X-engine8

1 0 1 2 3 4 5 6 7
2 8 9 10 11 12 13 14 15
3 16 17 18 19 20 21 22 23
.
.

63 496 497 498 499 500 501 502 503
64 504 505 506 507 508 509 510 511

GMRT-TIFR Page 38

For processing the entire spectrum, we have to interleave the data of the 10GbE packets coming
from each X-engine. Interleaving is carried out in 2 steps as follows.

1. The incoming data captured by gulp is separated into 8 files depending on the source IP
of the X-engines.

2. The spectral channels from these 8 files have to be arranged serially.

These two things are achieved using the following technique :

1. Separating the data into 8 files (according to the X-engine): The data packets sent over
the 10Gbe connection are UDP packets. Each of these packets contains a header of 42
bytes. This header contains the IP address of the source and destination in the 27th to 30th
byte respectively.
The header structure is as follows:

Figure 6.1 UDP Packet Header

Each of the 8 X-engines uses a different IP address. So, the X-engine that is sending a
particular packet can be identified on the basis of the source IP present in the packet
header sent by it.

GMRT-TIFR Page 39

Gulp captures the packets along with the header. A utility is developed to extract the
source IP from the header, identify it and accordingly select a file in which data has to be
written. This utility also converts the packet data into GNU compatible and PMON
compatible format. Thus 8 different files each containing data from a particular X-engine
are created at the end of this process.

2. Interleaving the 8 files to get a serial output: Then these 8 files are provided to the
interleaving code which arranges the channel data sequentially. Figure 6.2 illustrates how
channels from 8 different files are arranged in a single file.

Figure 6.2 Interleaving

In the figure 6.2, X1.txt contains data from X-engine 1, X2.txt contains data from X-
engine 2 and so on.

A “packet count” can be an add-on to the system. It will ensure interleaving of time
synchronized packets.

3. Ensuring time synchronized interleaving: A packet counter can be transmitted along with
the channel data. This is appended to the data packet at the packetization stage (before
sending it over the 10 GbE link). This packet counter acts as a time stamp for
synchronization of packet transmission from different X-engines. The process of
interleaving starts with checking of the packet counter. Only the packets from different

GMRT-TIFR Page 40

X-engines containing same packet counter will be interleaved together. If even one X-
engine’s packet with a specific packet count is not received, then all the packets with that
packet count from other X-engines will be discarded.

GMRT-TIFR

7. Packetized Beamformer Test Setup

1) DESIGN SPECIFICATIONS:
Number of F-engines: 4
Number of X-engines: 8

2) ROACH BOARDS USED:
ROACH boards used as F
ROACH040241, ROACH040242, ROACH040237, ROACH040246.
ROACH boards used as X
ROACH030167, ROACH030116, ROACH030174, ROACH040235.

There are two X-engines per ROACH board. The X
ROACH boards are as

ROACH BOARD NUMBER
030167
030116
030174
040235

Table (Y): ROACH board corresponding to the 8 X

(Note: Any other ROACH
ROACH board in the config_4ant script. Also make changes in the server_f and server_x
accordingly.)

3) CONNECTIONS TO THE F
F-engine is given four inputs:
1) Sync
2) I (Polarisation 0 input)
3) Clock
4) Q (Polarisation 1 input)

Packetized Beamformer Test Setup

DESIGN SPECIFICATIONS:
engines: 4
engines: 8

BOARDS USED:
ROACH boards used as F-engine:
ROACH040241, ROACH040242, ROACH040237, ROACH040246.
ROACH boards used as X-engine:
ROACH030167, ROACH030116, ROACH030174, ROACH040235.

engines per ROACH board. The X-engines and the correspondin
ROACH boards are as mentioned in the following table:

ROACH BOARD NUMBER CORRESPONDING X
X1 and X5
X2 and X6
X3 and X7
X2 and X8

Table (Y): ROACH board corresponding to the 8 X-

(Note: Any other ROACH board can be used by providing the name of the desired
ROACH board in the config_4ant script. Also make changes in the server_f and server_x

CONNECTIONS TO THE F -ENGINE:
engine is given four inputs:

2) I (Polarisation 0 input)

4) Q (Polarisation 1 input)

Figure 7.1 Connections to F-engine.

Page 41

Packetized Beamformer Test Setup

ROACH040241, ROACH040242, ROACH040237, ROACH040246.

ROACH030167, ROACH030116, ROACH030174, ROACH040235.

engines and the corresponding

CORRESPONDING X-ENGINES

-engines.

board can be used by providing the name of the desired
ROACH board in the config_4ant script. Also make changes in the server_f and server_x

GMRT-TIFR Page 42

4) 10 GbE PORT CONNECTIONS OF X-ENGINE:
Every ROACH board has 4 10 GbE ports. The connections to them are as shown in the
figure7.2:

Figure 7.2 10GbE port connections of X-engine.

5) CONNECTIONS BETWEEN F-ENGINE AND X-ENGINE:

The connections between F-engine and X-engine are as shown in the following diagram:

Figure 7.3 Connections between F-engine and X-engine

GMRT-TIFR Page 43

6) CONNECTIONS FROM X-ENGINE TO CONTROL PC:
The connection from the X-engines to control PC is made via the 10GbE switch. The
following diagram shows these connections.

Figure 7.4 Connections from X-engines to control PC via 10 GbE switch.

GMRT-TIFR Page 44

8. Testing of the Designs and Results

The BEAMFORMER_INCOH subsystem was designed in the MATLAB software using the
blocks of CASPER blockset and XYLINX blockset in the simulink library.

As the first step of testing, a 16 bit counter data was given as input to the
BEAMFORMER_INCOH subsystem and the results were verified by matching the results with
theoreotical calculation. The simulation results are attached below.

8.1 Simulation results

Test parameters for the simulation carried out:

Input: 16 bit counter.

No. of cycles for which 2^15 accumulation is to be carried out: 3.

1) Input: The Figure 8.1 is the output of the 16 bit counter as given to the beamformer
subsystem for 3 2^15 cycle. One ramp is considered as 128 timestamp data for all 64
channels in one sync cycle.

Figure 8.1 Simulation: Counter input

GMRT-TIFR Page 45

2) Addition of 128 timestamps from all antennas:

Figure 8.2 Simulation: Addition of 128 timestamps from all antennas.

3) Output of 2^15 accumulator block:

The accumulation takes place as follows. As our design is for accumulating 3 cycles of
2^15, we can see that it adds the 3 cycles of 2^15 and after that it starts new
accumulation.

Figure 8.3: Simulation: Output of accumulator block.

4) Generation of data,tx_valid and eof for 10Gbe core:

(Refer Figure 8.4)

1.The 1st graph shows the the ouput data after concatenating the polarisation1 and
polarization 0 data. Each signal corresponds to one channel data. They are 64 in number.

2. The 2nd graph shows the data transmission valid signal which is fed to Tx_valid signal
of the 10GbE NIC.

 3. The 3rd signal shows the end of frame signal. After this signal goes from 1 to 0, the
10GbE NIC acknowledge it as a end of one packet.

GMRT-TIFR Page 46

Figure 8.4 Simulation: 10GbE signals.

8.2 Sinewave test result

1.Sine wave test 1

Input: Sine wave at frequency 187.5 MHz

Roach board used: roach030167 used as X-engine.

Expected output:

 The frequency 187.5 MHz belongs to channel number 30 of this X-engine. A peak is expected
in the output at channel number 30 .

Interpretation of the figure:

X –axis: Channel number

Y-axis: Amplitude

GMRT-TIFR Page 47

A peak is present at channel number 30. No where else a peak is present. This indicates that
input signal contains frequency component corresponding to channel no.30 of this particular X-
engine.

Figure 8.5: Sine wave test result 1

GMRT-TIFR Page 48

2.Sine wave test 2

Channel 8 in the 512 channel spectrum.

Frequency: 6.25 MHz

X-engine used: 1

 X-engine channel no.:1

Figure 8.6: Sine wave test result 2

8.3 Interleaved data from 8 X-engines:

TEST : To check the functioning of interleaving code.

Connection:One to one connection between X-engine and control PC

Input: Sine wave frequencies belonging to each X-engines were given one by one as an input.

Processing: Data was captured separately and interleaved.

GMRT-TIFR Page 49

Output: Peaks observed at the respective channel numbers.

Figure 8.7: Interleaving result for 8 separate files.

8.4 Role played by data_valid

Sine wave without Data_valid:
(Refer figure 8.8)
The input and output both were shifted.
Notice the peak in output.
Input: Frequency:156.25 MHz
Channel input: 25
Output channel:26(shifted)

GMRT-TIFR Page 50

Figure 8.8: Sinewave Output-Data_valid not used.

Sine wave output with Data_valid:
(Refer figure 8.9)

The shifting is eliminated.
Peak at exact location.
Input Frequency:325 MHz
Channel input: 52
Output channel:52 (not shifted)

GMRT-TIFR Page 51

Figure 8.9: Sinewave Output: Data_valid used

8.5 Noise test results

Connections: All 8 X-engines connected to control PC via 10GbE switch

Input: Signal from noise generator passed through a low pass filter of 200 Mhz.

Output: GNU plot of the interleaved data from all X-engines

GMRT-TIFR Page 52

Figure 8.10. Noise Test Result-512 channel spectrum

Comaprison: Output of packetized Correlator Output and packetized Beamformer for Noise test.

Figure 8.11 Comparison: Packetized Correlator output v/s Packetized Beamformer output

GMRT-TIFR Page 53

8.6 Improvement in sensitivity with increase in number of antenna

Refer figure 8.12.

The colour code is as follows:

Pink- Noise output for input given to 1 antenna.

Blue- Noise output for input given to 2 antennas.

Green- Noise output for input given to 3 antennas.

Red- Noise output for input given to 4 antennas.

Figure 8.12. Noise test Output for Increasing Number of Antennas.

GMRT-TIFR Page 54

8.7 Pulsar test:

1.TEST:

• Date of observation: 30th October 2013.

• Pulsar: B0329+54(Period: 714.578196 msec)

• Antennas used: 4 central square antennas used.

• Sampling clock: 800MHz.

• Data acquisition: 5mins

• Integration time: 0.164 millisecond

• Beamformer Bandwidth: 400 MHz

• RF Bandwidth: 32 MHz

• Number of channels:512

Figure 8.13 PMON Profile for Pulsar B0329+54

GMRT-TIFR Page 55

COMPARING PULSAR RESULT WITH THEOREOTICAL RESULT: Pulsar
B0329+54

 GSB Output EPN Archive

Figure 8.14:GSB output:Pulsar B0329+54 Figure 8.15:EPN Archive:PulsarB0329+54

PACKETIZED BEAMFORMER OUTPUT

GMRT-TIFR Page 56

2.TEST : Pulsar test at 400Mhz RF Bandwidth.

• Date of observation: 27th November 2013.

• Pulsar: B0329+54

• Antennas used: 4 central square antennas used.

• Sampling clock:800MHz.

• Integration time: 0.164 millisecond

• Beamformer Bandwidth: 400 MHz

• RF Bandwidth: 400 MHz

• Number of channels:512

Figure 8.16 PMON Profile of Pulsar B0329+54 at 400MHz R.F. B.W.

This is the first detection through this design at full 400 MHz RF in the L-Band. Local Oscillator at 1450

MHz.

GMRT-TIFR

9. Add-on to the Beamformer Subsystem
This section briefly explains the add
separately.

9.1 Add-On:On-board integrator:

Purpose: Used for multiple sync cycle integration.

Working:

1) Accumulation is done in Dual Port RAM.
2) Three signals are generated: End cycle_minus 1, end_cycle plus 1 and end

cycle,end_cycle_minus1_ext.
3) Registers are used to give

registers are enabled and reset accordingly.
4) New_ acc gen:Register reset by end_cycle plus 1, enable by end cycle 1
5) Tx_valid: Register reset by end_cycle minus1_ ext, enable by end cycle minus 1,.

of this register is added with write enable which is input to this subsystem.
6) End of frame: counts 64 tx_valid and goes high on the 64

Timing Diagram: Figure 9.1 and 9.2 illustrate the timing diagram for accumulation of 3 sync
cycles.

Figure 9.1 Add

New_acc signal should be high for the first sync cycle of every accumulation as it is the select
signal to the MUX that selects the second input to the adder.

on to the Beamformer Subsystem
This section briefly explains the add-ons that have been added to the beamformer subsystem

board integrator:

: Used for multiple sync cycle integration.

Accumulation is done in Dual Port RAM.
Three signals are generated: End cycle_minus 1, end_cycle plus 1 and end
cycle,end_cycle_minus1_ext.
Registers are used to give a continuous high signal till some desired instant. These
registers are enabled and reset accordingly.
New_ acc gen:Register reset by end_cycle plus 1, enable by end cycle 1
Tx_valid: Register reset by end_cycle minus1_ ext, enable by end cycle minus 1,.
of this register is added with write enable which is input to this subsystem.
End of frame: counts 64 tx_valid and goes high on the 64th tx_valid.

Figure 9.1 and 9.2 illustrate the timing diagram for accumulation of 3 sync

Figure 9.1 Add-on: Generation of new_acc signal

New_acc signal should be high for the first sync cycle of every accumulation as it is the select
signal to the MUX that selects the second input to the adder.

Page 57

on to the Beamformer Subsystem
ons that have been added to the beamformer subsystem

Three signals are generated: End cycle_minus 1, end_cycle plus 1 and end

a continuous high signal till some desired instant. These

New_ acc gen:Register reset by end_cycle plus 1, enable by end cycle 1
Tx_valid: Register reset by end_cycle minus1_ ext, enable by end cycle minus 1,. Output
of this register is added with write enable which is input to this subsystem.

tx_valid.

Figure 9.1 and 9.2 illustrate the timing diagram for accumulation of 3 sync

New_acc signal should be high for the first sync cycle of every accumulation as it is the select

GMRT-TIFR

Figure 9.2 Add

64 tx_valid should come in the last sync cycle of every accumulation and end of frame should
go high on every 64th tx_valid.

Status: Design is compiled and tested for each X

Result: Figure 9.3 shows noise test results for 10 integration cycle(green) and 100 integration
cycle(red). The results are only for 1 X

Figure 9.3 Add

Figure 9.2 Add-on: Generation of Tx-valid and end of frame.

64 tx_valid should come in the last sync cycle of every accumulation and end of frame should
tx_valid.

: Design is compiled and tested for each X-engine separately. Results are as expected.

s noise test results for 10 integration cycle(green) and 100 integration
cycle(red). The results are only for 1 X-engine.

Figure 9.3 Add-on: Multiple Integration Result.

Page 58

nd of frame.

64 tx_valid should come in the last sync cycle of every accumulation and end of frame should

engine separately. Results are as expected.

s noise test results for 10 integration cycle(green) and 100 integration

GMRT-TIFR

9.2 Add-on:Packet counter:

Purpose: Time synchronized interleaving of packets.

Working: A packet count is added to the data packet after the values for all 64 channels of that
X-engine have arrived at the data input of the 10GbE v2 block of that particular X

Data-packet: It will now be of 520 bytes as 8 byte packet counter is

Figure 9.4 Data packet with packet counter

The UDP packet size will be 520 bytes(data)+42 bytes(header) i.e. 562 bytes.

Timing Diagram: Figure 9.5 shows the timing diagram for 10 GbE signals when a packet count
is transmitted along with data.

Figure 9.5 Add

: Time synchronized interleaving of packets.

: A packet count is added to the data packet after the values for all 64 channels of that
engine have arrived at the data input of the 10GbE v2 block of that particular X

: It will now be of 520 bytes as 8 byte packet counter is added to the packet.

Figure 9.4 Data packet with packet counter

The UDP packet size will be 520 bytes(data)+42 bytes(header) i.e. 562 bytes.

Figure 9.5 shows the timing diagram for 10 GbE signals when a packet count
is transmitted along with data.

Figure 9.5 Add-on: 10 GbE signals for packet counter

Page 59

: A packet count is added to the data packet after the values for all 64 channels of that
engine have arrived at the data input of the 10GbE v2 block of that particular X-engine.

added to the packet.

The UDP packet size will be 520 bytes(data)+42 bytes(header) i.e. 562 bytes.

Figure 9.5 shows the timing diagram for 10 GbE signals when a packet count

on: 10 GbE signals for packet counter

GMRT-TIFR Page 60

An extra tx_valid is generated for the packet count value and the end of frame goes high with
this extra tx_valid. In this case, 65 tx_valids will be there.

Status: Design checked in simulation. Size of data packet checked in wireshark. It is found to be
520 bytes.

GMRT-TIFR Page 61

10. Future work and recommendations

� Scale the design to 8 antennas

� Scale the design for greater number of channels

� Attempt time synchronized interleaving using packet counter logic. Develop
Post-processing scripts for the same.

� Attempt Sync cycle integration for all 8 X-engines together.

� Analysis of relative improvement in SNR as a function of number of
antennas.

GMRT-TIFR Page 62

11. References

1. Jayaram N Chengalur, Yashwant Gupta, K S Dwarkanath, ―Low Frequency Radio
Astronomy”, a note from school on radio astronomy held at NCRA, Pune , 1999.

2.Casper website, https://casper.berkeley.edu/

3. Casper tutorials on ROACH board,

a. On Introduction to Simulink,
https://casper.berkeley.edu/wiki/Introduction_to_Simulink
b. On The 10GbE Interface, https://casper.berkeley.edu/wiki/Tutorial_10GbE
c. On the Wideband Pocket Correlator, https://github.com/casperastro/
tutorials_devel/tree/master/workshop_2010/roach_tut4_wideband_poco

4.Cambodge bist, ― “Pocket Beamformer on FPGA” , student project report, NCRA,TIFR

5.Ankur Verma, Subhajit Majumder, ―”Designing of Coherent Pocket Beamforemer

on FPGA”, student project report, NCRA,TIFR

6. Pulsar Period Simulator,
http://astro.unl.edu/classaction/animations/extrasolarplanets/pulsarPeriodSim001.html

GMRT-TIFR Page 63

Appendix A
APPENDIX A-1

This is a list of the Frequencies that belong to X-engine1 and X-engine 2.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective X-engine out of the 64 channels.

Column 3 shows the Channel number for X-engine 1 out of the total 512 channels.

Column 4 shows the Frequencies accepted by X-engine 1 in MHz.

Column 6 shows the Channel number for X-engine 2 out of the total 512 channels.

Column 7 shows the Frequencies accepted by X-engine 2 in MHz.

Channel

X ENGINE 1 FREQUENCY

X ENGINE 2 FREQUENCY

(MHZ)

(MHZ)

0

0 0.00

1 0.78125

1

8 6.25

9 7.03125

2

16 12.50

17 13.28125

3

24 18.75

25 19.53125

4

32 25.00

33 25.78125

5

40 31.25

41 32.03125

6

48 37.50

49 38.28125

7

56 43.75

57 44.53125

8

64 50.00

65 50.78125

9

72 56.25

73 57.03125

10

80 62.50

81 63.28125

11

88 68.75

89 69.53125

12

96 75.00

97 75.78125

13

104 81.25

105 82.03125

14

112 87.50

113 88.28125

15

120 93.75

121 94.53125

16

128 100.00

129 100.78125

17

136 106.25

137 107.03125

18

144 112.50

145 113.28125

19

152 118.75

153 119.53125

20

160 125.00

161 125.78125

21

168 131.25

169 132.03125

GMRT-TIFR Page 64

22

176 137.50

177 138.28125

23

184 143.75

185 144.53125

24

192 150.00

193 150.78125

25

200 156.25

201 157.03125

26

208 162.50

209 163.28125

27

216 168.75

217 169.53125

28

224 175.00

225 175.78125

29

232 181.25

233 182.03125

30

240 187.50

241 188.28125

31

248 193.75

249 194.53125

32

256 200.00

257 200.78125

33

264 206.25

265 207.03125

34

272 212.50

273 213.28125

35

280 218.75

281 219.53125

36

288 225.00

289 225.78125

37

296 231.25

297 232.03125

38

304 237.50

305 238.28125

39

312 243.75

313 244.53125

40

320 250.00

321 250.78125

41

328 256.25

329 257.03125

42

336 262.50

337 263.28125

43

344 268.75

345 269.53125

44

352 275.00

353 275.78125

45

360 281.25

361 282.03125

46

368 287.50

369 288.28125

47

376 293.75

377 294.53125

48

384 300.00

385 300.78125

49

392 306.25

393 307.03125

50

400 312.50

401 313.28125

51

408 318.75

409 319.53125

52

416 325.00

417 325.78125

53

424 331.25

425 332.03125

54

432 337.50

433 338.28125

55

440 343.75

441 344.53125

56

448 350.00

449 350.78125

57

456 356.25

457 357.03125

58

464 362.50

465 363.28125

59

472 368.75

473 369.53125

60

480 375.00

481 375.78125

61

488 381.25

489 382.03125

62

496 387.50

497 388.28125

GMRT-TIFR Page 65

63

504 393.75

505 394.53125

GMRT-TIFR Page 66

APPENDIX A-2

This is a list of the Frequencies that belong to X-engine 3 and X-engine 4.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective X-engine out of the 64 channels.

Column 3 shows the Channel number for X-engine 3 out of the total 512 channels.

Column 4 shows the Frequencies accepted by X-engine 3 in MHz.

Column 6 shows the Channel number for X-engine 4 out of the total 512 channels.

Column 7 shows the Frequencies accepted by X-engine 4 in MHz.

Channel

X ENGINE 3 FREQUENCY

X ENGINE 4 FREQUENCY

(MHZ)

(MHZ)

0

2 1.5625

3 2.34375

1

10 7.8125

11 8.59375

2

18 14.0625

19 14.84375

3

26 20.3125

27 21.09375

4

34 26.5625

35 27.34375

5

42 32.8125

43 33.59375

6

50 39.0625

51 39.84375

7

58 45.3125

59 46.09375

8

66 51.5625

67 52.34375

9

74 57.8125

75 58.59375

10

82 64.0625

83 64.84375

11

90 70.3125

91 71.09375

12

98 76.5625

99 77.34375

13

106 82.8125

107 83.59375

14

114 89.0625

115 89.84375

15

122 95.3125

123 96.09375

16

130 101.5625

131 102.34375

17

138 107.8125

139 108.59375

18

146 114.0625

147 114.84375

19

154 120.3125

155 121.09375

20

162 126.5625

163 127.34375

21

170 132.8125

171 133.59375

22

178 139.0625

179 139.84375

23

186 145.3125

187 146.09375

GMRT-TIFR Page 67

24

194 151.5625

195 152.34375

25

202 157.8125

203 158.59375

26

210 164.0625

211 164.84375

27

218 170.3125

219 171.09375

28

226 176.5625

227 177.34375

29

234 182.8125

235 183.59375

30

242 189.0625

243 189.84375

31

250 195.3125

251 196.09375

32

258 201.5625

259 202.34375

33

266 207.8125

267 208.59375

34

274 214.0625

275 214.84375

35

282 220.3125

283 221.09375

36

290 226.5625

291 227.34375

37

298 232.8125

299 233.59375

38

306 239.0625

307 239.84375

39

314 245.3125

315 246.09375

40

322 251.5625

323 252.34375

41

330 257.8125

331 258.59375

42

338 264.0625

339 264.84375

43

346 270.3125

347 271.09375

44

354 276.5625

355 277.34375

45

362 282.8125

363 283.59375

46

370 289.0625

371 289.84375

47

378 295.3125

379 296.09375

48

386 301.5625

387 302.34375

49

394 307.8125

395 308.59375

50

402 314.0625

403 314.84375

51

410 320.3125

411 321.09375

52

418 326.5625

419 327.34375

53

426 332.8125

427 333.59375

54

434 339.0625

435 339.84375

55

442 345.3125

443 346.09375

56

450 351.5625

451 352.34375

57

458 357.8125

459 358.59375

58

466 364.0625

467 364.84375

59

474 370.3125

475 371.09375

60

482 376.5625

483 377.34375

61

490 382.8125

491 383.59375

62

498 389.0625

499 389.84375

63

506 395.3125

507 396.09375

GMRT-TIFR Page 68

APPENDIX A-3

This is a list of the Frequencies that belong to X-engine 5 and X-engine 6.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective X-engine out of the 64 channels.

Column 3 shows the Channel number for X-engine 5 out of the total 512 channels.

Column 4 shows the Frequencies accepted by X-engine 5 in MHz.

Column 6 shows the Channel number for X-engine 6 out of the total 512 channels.

Column 7 shows the Frequencies accepted by X-engine 6 in MHz.

Channel

X ENGINE 5 FREQUENCY

X ENGINE 6 FREQUENCY

(MHZ)

(MHZ)

0

4 3.125

5 3.90625

1

12 9.375

13 10.15625

2

20 15.625

21 16.40625

3

28 21.875

29 22.65625

4

36 28.125

37 28.90625

5

44 34.375

45 35.15625

6

52 40.625

53 41.40625

7

60 46.875

61 47.65625

8

68 53.125

69 53.90625

9

76 59.375

77 60.15625

10

84 65.625

85 66.40625

11

92 71.875

93 72.65625

12

100 78.125

101 78.90625

13

108 84.375

109 85.15625

14

116 90.625

117 91.40625

15

124 96.875

125 97.65625

16

132 103.125

133 103.90625

17

140 109.375

141 110.15625

18

148 115.625

149 116.40625

19

156 121.875

157 122.65625

20

164 128.125

165 128.90625

21

172 134.375

173 135.15625

22

180 140.625

181 141.40625

23

188 146.875

189 147.65625

GMRT-TIFR Page 69

24

196 153.125

197 153.90625

25

204 159.375

205 160.15625

26

212 165.625

213 166.40625

27

220 171.875

221 172.65625

28

228 178.125

229 178.90625

29

236 184.375

237 185.15625

30

244 190.625

245 191.40625

31

252 196.875

253 197.65625

32

260 203.125

261 203.90625

33

268 209.375

269 210.15625

34

276 215.625

277 216.40625

35

284 221.875

285 222.65625

36

292 228.125

293 228.90625

37

300 234.375

301 235.15625

38

308 240.625

309 241.40625

39

316 246.875

317 247.65625

40

324 253.125

325 253.90625

41

332 259.375

333 260.15625

42

340 265.625

341 266.40625

43

348 271.875

349 272.65625

44

356 278.125

357 278.90625

45

364 284.375

365 285.15625

46

372 290.625

373 291.40625

47

380 296.875

381 297.65625

48

388 303.125

389 303.90625

49

396 309.375

397 310.15625

50

404 315.625

405 316.40625

51

412 321.875

413 322.65625

52

420 328.125

421 328.90625

53

428 334.375

429 335.15625

54

436 340.625

437 341.40625

55

444 346.875

445 347.65625

56

452 353.125

453 353.90625

57

460 359.375

461 360.15625

58

468 365.625

469 366.40625

59

476 371.875

477 372.65625

60

484 378.125

485 378.90625

61

492 384.375

493 385.15625

62

500 390.625

501 391.40625

63

508 396.875

509 397.65625

GMRT-TIFR Page 70

APPENDIX A-4

This is a list of the Frequencies that belong to X-engine 7 and X-engine 8.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective X-engine out of the 64 channels.

Column 3 shows the Channel number for X-engine 7 out of the total 512 channels.

Column 4 shows the Frequencies accepted by X-engine 7 in MHz.

Column 6 shows the Channel number for X-engine 8 out of the total 512 channels.

Column 7 shows the Frequencies accepted by X-engine 8 in MHz.

Channel

X ENGINE 7 FREQUENCY

X ENGINE 8 FREQUENCY

(MHZ)

(MHZ)

0

6 4.68750

7 5.46875

1

14 10.93750

15 11.71875

2

22 17.18750

23 17.96875

3

30 23.43750

31 24.21875

4

38 29.68750

39 30.46875

5

46 35.93750

47 36.71875

6

54 42.18750

55 42.96875

7

62 48.43750

63 49.21875

8

70 54.68750

71 55.46875

9

78 60.93750

79 61.71875

10

86 67.18750

87 67.96875

11

94 73.43750

95 74.21875

12

102 79.68750

103 80.46875

13

110 85.93750

111 86.71875

14

118 92.18750

119 92.96875

15

126 98.43750

127 99.21875

16

134 104.68750

135 105.46875

17

142 110.93750

143 111.71875

18

150 117.18750

151 117.96875

19

158 123.43750

159 124.21875

20

166 129.68750

167 130.46875

21

174 135.93750

175 136.71875

22

182 142.18750

183 142.96875

23

190 148.43750

191 149.21875

GMRT-TIFR Page 71

24

198 154.68750

199 155.46875

25

206 160.93750

207 161.71875

26

214 167.18750

215 167.96875

27

222 173.43750

223 174.21875

28

230 179.68750

231 180.46875

29

238 185.93750

239 186.71875

30

246 192.18750

247 192.96875

31

254 198.43750

255 199.21875

32

262 204.68750

263 205.46875

33

270 210.93750

271 211.71875

34

278 217.18750

279 217.96875

35

286 223.43750

287 224.21875

36

294 229.68750

295 230.46875

37

302 235.93750

303 236.71875

38

310 242.18750

311 242.96875

39

318 248.43750

319 249.21875

40

326 254.68750

327 255.46875

41

334 260.93750

335 261.71875

42

342 267.18750

343 267.96875

43

350 273.43750

351 274.21875

44

358 279.68750

359 280.46875

45

366 285.93750

367 286.71875

46

374 292.18750

375 292.96875

47

382 298.43750

383 299.21875

48

390 304.68750

391 305.46875

49

398 310.93750

399 311.71875

50

406 317.18750

407 317.96875

51

414 323.43750

415 324.21875

52

422 329.68750

423 330.46875

53

430 335.93750

431 336.71875

54

438 342.18750

439 342.96875

55

446 348.43750

447 349.21875

56

454 354.68750

455 355.46875

57

462 360.93750

463 361.71875

58

470 367.18750

471 367.96875

59

478 373.43750

479 374.21875

60

486 379.68750

487 380.46875

61

494 385.93750

495 386.71875

62

502 392.18750

503 392.96875

63

510 398.43750

511 399.21875

GMRT-TIFR Page 72

Appendix B

Resource utilization of the Packetized beamformer design.

Design Information

Command Line : map -ise ../__xps/ise/system.ise - timing -detail -ol high
-xe n
-register_duplication -o system_map.ncd -w -pr b sy stem.ngd system.pcf
Target Device : xc5vsx95t
Target Package : ff1136
Target Speed : -1
Mapper Version : virtex5 -- $Revision: 1.51.18.1 $
Mapped Date : Fri Nov 22 17:44:06 2013

Design Summary

Design Summary:
Number of errors: 0
Number of warnings: 3233
Slice Logic Utilization:
 Number of Slice Registers: 33,922 out of 58,880 57%
 Number used as Flip Flops: 33,916
 Number used as Latch-thrus: 6
 Number of Slice LUTs: 32,610 out of 58,880 55%
 Number used as logic: 28,309 out of 58,880 48%
 Number using O6 output only: 22,088
 Number using O5 output only: 2,898
 Number using O5 and O6: 3,323
 Number used as Memory: 3,957 out of 24,320 16%
 Number used as Dual Port RAM: 544
 Number using O6 output only: 346
 Number using O5 and O6: 198
 Number used as Shift Register: 3,413
 Number using O6 output only: 3,413
 Number used as exclusive route-thru: 344
 Number of route-thrus: 3,461
 Number using O6 output only: 3,188
 Number using O5 output only: 234
 Number using O5 and O6: 39

Slice Logic Distribution:
 Number of occupied Slices: 12,974 out of 14,720 88%
 Number of LUT Flip Flop pairs used: 42,584
 Number with an unused Flip Flop: 8,662 out of 42,584 20%
 Number with an unused LUT: 9,974 out of 42,584 23%
 Number of fully used LUT-FF pairs: 23,948 out of 42,584 56%
 Number of unique control sets: 1,166

GMRT-TIFR Page 73

 Number of slice register sites lost
 to control set restrictions: 2,489 out of 58,880 4%

 A LUT Flip Flop pair for this architecture repres ents one LUT paired
with
 one Flip Flop within a slice. A control set is a unique combination of
 clock, reset, set, and enable signals for a regis tered element.
 The Slice Logic Distribution report is not meanin gful if the design is
 over-mapped for a non-slice resource or if Placem ent fails.
 OVERMAPPING of BRAM resources should be ignored i f the design is
 over-mapped for a non-BRAM resource or if placeme nt fails.

IO Utilization:
 Number of bonded IOBs: 188 out of 640 29%
 Number of LOCed IOBs: 188 out of 188 100%
 IOB Flip Flops: 176
 Number of bonded IPADs: 36 out of 50 72%
 Number of bonded OPADs: 32 out of 32 100%

Specific Feature Utilization:
 Number of BlockRAM/FIFO: 173 out of 244 70%
 Number using BlockRAM only: 173
 Total primitives used:
 Number of 36k BlockRAM used: 155
 Number of 18k BlockRAM used: 28
 Total Memory used (KB): 6,084 out of 8,784 69%
 Number of BUFG/BUFGCTRLs: 14 out of 32 43%
 Number used as BUFGs: 14
 Number of IDELAYCTRLs: 2 out of 22 9%
 Number of BUFDSs: 2 out of 8 25%
 Number of CRC64s: 6 out of 16 37%
 Number of DCM_ADVs: 4 out of 12 33%
 Number of DSP48Es: 128 out of 640 20%
 Number of GTP_DUALs: 8 out of 8 100%
 Number of PLL_ADVs: 2 out of 6 33%

Average Fanout of Non-Clock Nets: 3. 07

Peak Memory Usage: 1851 MB
Total REAL time to MAP completion: 15 mins 50 secs
Total CPU time to MAP completion: 15 mins 35 secs

Mapping completed.

GMRT-TIFR Page 74

Appendix C

This is the Initialization python script for the Packetized Beamformer
Design.

#!/usr/bin/python
import katcp, numpy, pylab, time, corr, sys
device_host = "roach030167" # This board has X- engine 1 and Xengine 5
device_host1 = "roach030116" # This board has X- engine 2 and Xengine 6
device_host2 = "roach030174" # This board has X- engine 3 and Xengine 7
device_host3 = "roach040235" # This board has X- engine 4 and Xengine 8

device_port = 7147

#dest_ip =192*(2**24) + 168*(2**16) + 8*(2**8) + 2 00
dest_ip =10*(2**24) + 0*(2**16) + 0*(2**8) + 1 #Modified on 25th
Oct2013
fabric_port=60000
#source_ip= 192*(2**24) + 168*(2**16) + 8*(2**8) + 201
source_ip= 10*(2**24) + 0*(2**16) + 0*(2**8) + 13 #Modified on 25th
Oct2013
mac_base=(2<<40) + (2<<32)

core name of upper 10Gbe
tx_core_name1 = 'BEAMFORMER_INCOH1_ten_Gbe_v2'
core name of lower 10Gbe
tx_core_name = 'BEAMFORMER_INCOH_ten_Gbe_v2'

defining my corr for all roach Boards
my_corr =corr.katcp_wrapper.FpgaClient(device_host, device_port)
my_corr1=corr.katcp_wrapper.FpgaClient(device_host1 ,device_port)
my_corr2=corr.katcp_wrapper.FpgaClient(device_host2 ,device_port)
my_corr3=corr.katcp_wrapper.FpgaClient(device_host3 ,device_port)

my_corr4 =corr.katcp_wrapper.FpgaClient(device_host ,device_port)
my_corr5=corr.katcp_wrapper.FpgaClient(device_host1 ,device_port)
my_corr6=corr.katcp_wrapper.FpgaClient(device_host2 ,device_port)
my_corr7=corr.katcp_wrapper.FpgaClient(device_host3 ,device_port)

print "beam former"
#checking whether all roach boards are connected
while not (my_corr.is_connected() and my_corr1.is_c onnected() and
my_corr2.is_connected() and my_corr3.is_connected()):
 pass
#added these lines on 12/12/2012.
print" Successfully Connected to ROACH \n%s\t%s\t%s \t%s\n"
%(device_host,device_host1,device_host2,device_host 3)

#writing the number of integration cycles on all ro ach boards.It should be
same for all 8 x-engines.

my_corr.write_int("no_cycle",1)

GMRT-TIFR Page 75

my_corr1.write_int("no_cycle",1)
my_corr2.write_int("no_cycle",1)
my_corr3.write_int("no_cycle",1)

print"Integration time = %f"%(0.163*(10**-3)*10)

print 'Setting Destination IP on transmitter core.. .',

#writing the destination ip in all software registe rs on all roach boards.
This is for upper X-engine.
my_corr.write_int("tx_destination_ip_ps_x1",dest_ip)
my_corr1.write_int("tx_destination_ip_ps_x1",dest_i p)
my_corr2.write_int("tx_destination_ip_ps_x1",dest_i p)
my_corr3.write_int("tx_destination_ip_ps_x1",dest_i p)

#writing the destination ip in all software registe rs on all roach boards.
This is for lower X-engine.
my_corr4.write_int("tx_destination_ip_ps_x2",dest_i p)
my_corr5.write_int("tx_destination_ip_ps_x2",dest_i p)
my_corr6.write_int("tx_destination_ip_ps_x2",dest_i p)
my_corr7.write_int("tx_destination_ip_ps_x2",dest_i p)

print "tx_destination_ip_ps=\n%i\n%i\%i\n%i\n%i\n%i \n%i\n%i\n"
%(my_corr.read_int("tx_destination_ip_ps"),

my_corr1.read_int("tx_destination_ip_ps"),

my_corr2.read_int("tx_destination_ip_ps"),

my_corr3.read_int("tx_destination_ip_ps"),

my_corr4.read_int("tx_destination_ip_ps1"),

my_corr5.read_int("tx_destination_ip_ps1"),

my_corr6.read_int("tx_destination_ip_ps1"),

my_corr7.read_int("tx_destination_ip_ps1"))

print 'Configuring transmitter core...',
sys.stdout.flush()
my_corr.tap_start('tap0',tx_core_name,mac_base+sour ce_ip,source_ip,fabric_
port)
my_corr1.tap_start('tap0',tx_core_name,mac_base+sou rce_ip+1,source_ip+1,fa
bric_port)
my_corr2.tap_start('tap0',tx_core_name,mac_base+sou rce_ip+2,source_ip+2,fa
bric_port)
my_corr3.tap_start('tap0',tx_core_name,mac_base+sou rce_ip+3,source_ip+3,fa
bric_port)
#NOTE: keep the tg tap number different for ten GbE v2 blocks belonging to
the same ROACH board.

GMRT-TIFR Page 76

my_corr4.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+4,source_ip+4,f
abric_port)
my_corr5.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+5,source_ip+5,f
abric_port)
my_corr6.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+6,source_ip+6,f
abric_port)
my_corr7.tap_start('tap3',tx_core_name1,mac_base+so urce_ip+7,source_ip+7,f
abric_port)

print 'done'

print 'Setting-up destination addresses...',
sys.stdout.flush()
my_corr.write_int("tx_destination_ip_ps_x1",dest_ip)
my_corr1.write_int("tx_destination_ip_ps_x1",dest_i p)
my_corr2.write_int("tx_destination_ip_ps_x1",dest_i p)
my_corr3.write_int("tx_destination_ip_ps_x1",dest_i p)

my_corr4.write_int("tx_destination_ip_ps_x2",dest_i p)
my_corr5.write_int("tx_destination_ip_ps_x2",dest_i p)
my_corr6.write_int("tx_destination_ip_ps_x2",dest_i p)
my_corr7.write_int("tx_destination_ip_ps_x2",dest_i p)

#writing the destination port in all software regis ters of all roach
boards. This is for upper X-engine.
my_corr.write_int('tx_destination_port_ps_x1',fabri c_port)
my_corr1.write_int('tx_destination_port_ps_x1',fabr ic_port)
my_corr2.write_int('tx_destination_port_ps_x1',fabr ic_port)
my_corr3.write_int('tx_destination_port_ps_x1',fabr ic_port)

#writing the destination port in all software regis ters of all roach
boards. This is for lower X-engine.
my_corr4.write_int('tx_destination_port_ps_x2',fabr ic_port)
my_corr5.write_int('tx_destination_port_ps_x2',fabr ic_port)
my_corr6.write_int('tx_destination_port_ps_x2',fabr ic_port)
my_corr7.write_int('tx_destination_port_ps_x2',fabr ic_port)

print 'done'

#resetting 10Gbe core of upper X-engine of all roac h boards
my_corr.write_int("reset_gbe_ps_x1",0)
my_corr1.write_int("reset_gbe_ps_x1",0)
my_corr2.write_int("reset_gbe_ps_x1",0)
my_corr3.write_int("reset_gbe_ps_x1",0)

#resetting 10Gbe core of lower X-engine of all roac h boards
my_corr4.write_int("reset_gbe_ps_x2",0)

GMRT-TIFR Page 77

my_corr5.write_int("reset_gbe_ps_x2",0)
my_corr6.write_int("reset_gbe_ps_x2",0)
my_corr7.write_int("reset_gbe_ps_x2",0)
#print "reset_gbe_ps= %i" %my_corr.read_int("reset_ gbe_ps_x2")

my_corr.stop()
my_corr1.stop()
my_corr2.stop()
my_corr3.stop()
my_corr4.stop()
my_corr5.stop()
my_corr6.stop()

GMRT-TIFR Page 78

Appendix D

// This C code converts the data cpatured by Gulp f rom binary to ASCII//
// while running specify as following: <name of the gulp dumped file>
<pack_size> <scale> <nameof file1> <name of file2> ... <name of file8>
<name of file to store headers>

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdint.h>
int main(int argc,char* argv[])
{
//unsigned char *buffer;
 long lsize;
int i;
int k,l;

size_t result;
size_t scale;
size_t pack_size;

pack_size = atoi(argv[2]);// input packet size
printf("pack_size is %d\n",pack_size);

scale = atoi(argv[3]);//input scaling factor
// create 8 new empty file with the names n1s.txt n 2s.txt ...//
FILE *ha = fopen("n1s.txt","w");// File will conati n data of X-engine1//
FILE *ha1 = fopen("n2s.txt","w");// File will conat in data of X-engine2//
FILE *ha2 = fopen("n3s.txt","w");// File will conat in data of X-engine3//
FILE *ha3 = fopen("n4s.txt","w");// File will conat in data of X-engine4//
FILE *ha4 = fopen("n5s.txt","w");// File will conat in data of X-engine5//
FILE *ha5 = fopen("n6s.txt","w");// File will conat in data of X-engine6//
FILE *ha6 = fopen("n7s.txt","w");// File will conat in data of X-engine7//
FILE *ha7 = fopen("n8s.txt","w");// File will conat in data of X-engine8//

FILE *head = fopen("nhs.txt","w");// File will cona tin source and
destination IP of all data packets received//

//fclose(hd);
printf("File Name: %s",argv[1]);// argv[1] contains the name of .dat file
in which gulp packets are dumped.//
FILE *file = fopen(argv[1], "r");

 /* fopen returns 0, the NULL pointer, on fa ilure */
 if (file == 0){
 fputs ("File error",stderr);
 exit (1);
 }
 else{
 fseek (file , 0 , SEEK_END);
 lsize = ftell (file);

GMRT-TIFR Page 79

 rewind (file);
 printf("%ld \n",lsize);
 unsigned char* buffer = (unsigned char*) malloc(ls ize*sizeof(unsigned
char));
 if (buffer == NULL){
 fputs ("Memory error",stderr);
 exit (2);
 }
 else{

 result = fread(buffer,sizeof(unsigned char),lsize, file);

 printf("fread result %d\n",result);

for(i=0;i<lsize/pack_size;i++)
{

unsigned long int src_ip,file_select;
unsigned long int temp;

//following for separating source IP and destinatio n IP from the packet
header.//

for(k = 26;k<27;k=k+8)
{

if (k==26){
 unsigned long int src_ip= 0, des_ip= 0; // the source ip and des
ip does not fit in 16 bit so we use long int data t ype for that.

 // for source ip

 temp = (unsigned long int) buffer[i*pack_si ze + k];
 temp = temp << 24;
 src_ip += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k + 1];
 temp = temp << 16;
 src_ip += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k + 2];
 temp = temp << 8;
 src_ip += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k + 3];

 src_ip += (unsigned long int) temp;

 file_select=src_ip;

// for destination ip

 temp = (unsigned long int) buffer[i*pack_si ze + k+4];
 temp = temp << 24;
 des_ip += (unsigned long int) temp;

GMRT-TIFR Page 80

 temp = (unsigned long int) buffer[i*pack_si ze + k+5];
 temp = temp << 16;
 des_ip += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k+6];
 temp = temp << 8;
 des_ip += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k+7];

 des_ip += (unsigned long int) temp;

// to print to the file containing source addresses of received packets

 fprintf(head,"%lu\t%lu\n",des_ip,src_ip);

 }

for(k = 42;k<pack_size;k=k+8) //Data in gulp packet starts at 43rd byte
gulp packet with header. Each data of 8 bytes(64 bi ts)
{ // Binary to ASCII conversion
 if (k<pack_size){
 unsigned long int pol0 = 0, pol1 = 0,temp_s hort=0;
 signed short int pol0_scale = 0, pol1_scale = 0;temp_short=0;

// for polarization 0

 temp = (unsigned long int) buffer[i*pack_size + k] ;
 temp = temp << 24;
 pol0 += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k + 1];
 temp = temp << 16;
 pol0 += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k + 2];
 temp = temp << 8;
 pol0 += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k + 3];
 pol0 += (unsigned long int) temp;
 if (pol0 > 2147483647)
 { pol0 = pol0 - 4294967296;
 }
 temp_short=(pol0/scale);
 pol0_scale = (signed short int) temp_short;

//for polarization 1

 temp = (unsigned long int) buffer[i*pack_size + k+ 4];
 temp = temp << 24;
 pol1 += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k+5];
 temp = temp << 16;
 pol1 += (unsigned long int) temp;
 temp = (unsigned long int) buffer[i*pack_si ze + k+6];
 temp = temp << 8;
 pol1 += (unsigned long int) temp;

GMRT-TIFR Page 81

 temp = (unsigned long int) buffer[i*pack_si ze + k+7];

 pol1 += (unsigned long int) temp;
 if (pol1 > 2147483647)
 {pol1 = pol1 - 4294967296;
 }
 temp_short=(pol1/scale);
 pol1_scale = (signed short int) temp_short ;

// the following section selects the output file to which data has to be
written.

if(file_select == 167772173)//167772173= Souce IP o f X-engine 1//
// Data of polarisation 1 is printed below. If data of polarisation 0 is
required then repalce the command by fprintf(ha1,%h d\n",pol0_scale);
{ fprintf(ha,"%hd\n",pol1_scale);}
else
 if (file_select == 167772174)//167772174= S ouce IP of X-engine 2//
 { fprintf(ha1,"%hd\n",pol1_scale);}
else
 if (file_select == 167772175)//167772175= S ouce IP of X-engine 3//
 { fprintf(ha2,"%hd\n",pol1_scale);}
else
 if (file_select == 167772176)//167772176= S ouce IP of X-engine 4//
 {fprintf(ha3,"%hd\n",pol1_scale);}

else
 if (file_select == 167772177)//167772177= S ouce IP of X-engine 5//
 {fprintf(ha4,"%hd\n",pol1_scale);}

else
 if (file_select == 167772178)//167772178= S ouce IP of X-engine 6//
 {fprintf(ha5,"%hd\n",pol1_scale);}
else
 if (file_select == 167772179)//167772179= S ouce IP of X-engine 7//
 {fprintf(ha6,"%hd\n",pol1_scale);}
else
 {fprintf(ha7,"%hd\n",pol1_scale);}// print to 8th X-engine's
file.//

 }

 }
}

}

}
 free(buffer);
}

GMRT-TIFR Page 82

 fclose(ha);
 fclose(ha1);
 fclose(ha2);
 fclose(ha3);
 fclose(ha4);
 fclose(ha5);
 fclose(ha6);
 fclose(ha7);
 fclose(head);
 fclose(file);

 return 0;

}

GMRT-TIFR Page 83

Appendix E

// This C code will interleave all the 8 files. Eac h file belonged to one
X-engine data//

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdint.h>

int main(void)
{

FILE *in1=fopen("n1s.txt", "r");//File containing d ata from X-engine 1//
FILE *in2=fopen("n2s.txt", "r");//File containing d ata from X-engine 2//
FILE *in3=fopen("n3s.txt", "r");//File containing d ata from X-engine 3//
FILE *in4=fopen("n4s.txt", "r");//File containing d ata from X-engine 4//
FILE *in5=fopen("n5s.txt", "r");//File containing d ata from X-engine 5//
FILE *in6=fopen("n6s.txt", "r");//File containing d ata from X-engine 6//
FILE *in7=fopen("n7s.txt", "r");//File containing d ata from X-engine 7//
FILE *in8=fopen("n8s.txt", "r");//File containing d ata from X-engine 8//

if ((in1 != NULL) && (in2 != NULL) && (in3 != NULL) && (in4 != NULL) &&
(in5 != NULL) && (in6 != NULL) && (in7 != NULL) && (in8 != NULL))
// This if loop checks that there is atleast 1 pack et data in all X-
engines.//
 {
 char line1[BUFSIZ];
 char line2[BUFSIZ];
 char line3[BUFSIZ];
 char line4[BUFSIZ];
 char line5[BUFSIZ];
 char line6[BUFSIZ];
 char line7[BUFSIZ];
 char line8[BUFSIZ];

 while ((fgets(line1, sizeof line1, in1) != NULL) &&
(fgets(line2, sizeof line2, in2) != NULL) && (fgets (line3, sizeof line3,
in3) != NULL) && (fgets(line4, sizeof line4, in4) ! = NULL) &&
(fgets(line5, sizeof line5, in5) != NULL) && (fgets (line6, sizeof line6,
in6) != NULL) && (fgets(line7, sizeof line7, in7) ! = NULL) &&
(fgets(line8, sizeof line8, in8) != NULL))
 {
 char *start1 = line1;
 char *start2 = line2;
 char *start3 = line3;
 char *start4 = line4;
 char *start5 = line5;
 char *start6 = line6;
 char *start7 = line7;

GMRT-TIFR Page 84

 char *start8 = line8;
 signed short int
field1,field2,field3,field4,field5,field6,field7,fi eld8;
 int n;

 while ((sscanf(start1, "%hd %n", &field1, &n) == 1)
&& (sscanf(start2, "%hd%n", &field2, &n) == 1) && (sscanf(start3, "%hd%n",
&field3, &n) == 1) && (sscanf(start4, "%hd%n", &fie ld4, &n) == 1) &&
(sscanf(start5, "%hd%n", &field5, &n) == 1) && (ssc anf(start6, "%hd%n",
&field6, &n) == 1) && (sscanf(start7, "%hd%n", &fie ld7, &n) == 1) &&
(sscanf(start8, "%hd%n", &field8, &n) == 1))

 { // interleaving done here by printing
channels one below the other in proper order//

 printf("%hd\n", fi eld1);
 start1 += n;
 printf("%hd\n", fie ld2);
 start2 += n;
 printf("%hd\n", fie ld3);
 start3 += n;
 printf("%hd\n", fie ld4);
 start4 += n;
 printf("%hd\n", fie ld5);
 start5 += n;
 printf("%hd\n", fi eld6);
 start6 += n;
 printf("%hd\n", fie ld7);
 start7 += n;
 printf("%hd", fiel d8);
 start8 += n;

 }

 }

 fclose(in1);
 fclose(in2);
 fclose(in3);
 fclose(in4);
 fclose(in5);
 fclose(in6);
 fclose(in7);
 fclose(in8);
 fclose(inter_bin);
 }
 return 0;
}

GMRT-TIFR Page 85

Appendix F

// This C code will convert ASCII interleaved file into Pmon compatible
format. Pmon compatible format is 16 bit signed bin ary//

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdint.h>

int main(void)
{

FILE *rp=fopen("tst1.txt", "r");// give the name of the File that contains
interleaved ASCII data
FILE *wp=fopen("tst7.raw", "w");//give the name of the File that will
contain interleaved binary data

if ((rp != NULL))
{
 char line1[BUFSIZ];
 while (fgets(line1, sizeof line1, rp) != NU LL)
 {
 char *start1 = line1;
 signed short int field1;
 int n;
 while ((sscanf(start1, "%hd%n", &f ield1, &n) == 1))
 {

 fwrite(&field1,sizeof(field 1),1,wp); // fwrite
writes binary
 start1 += n;

 }
 }
 fclose(rp);
}
return 0;
}

