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Direct Downconversion of Multiband RF Signals
Using Bandpass Sampling

Ching-Hsiang Tseng and Sun-Chung Chou

Abstract— Bandpass sampling can be used by radio receivers
to directly digitize the radio frequency (RF) signals. Although
the bandpass sampling theory for single-band RF signals is well
established, its counterpart for multiband RF signals is relatively
immature. In this paper, we propose a novel and efficient method
to find the ranges of valid bandpass sampling frequency for direct
downconverting multiband RF signals. Simple formulas for the
ranges of valid bandpass sampling frequency in terms of the
frequency locations of the multiple RF bands are derived. The
result can be used to design a multiband receiver for software
defined radios.

Index Terms— Software defined radio, bandpass sampling,
sampling methods, analog-digital conversion, signal sampling.

I. INTRODUCTION

MOBILE communication standards emerged in an in-
creasing speed in recent years. The software defined

radio (SDR) [1], which was originally conceived for military
applications [2], has the agility of changing its functionality
through replacement of the application program and hence
provides a relatively economical way to accommodate the
rapid emerging mobile communication standards. The main
philosophy in designing a SDR receiver front end is to push
the analog-to-digital converter (ADC) as close to the antenna
as possible. The ultimate goal, would be direct digitizing the
radio frequency (RF) signal at the receiver antenna output [3].
To achieve this goal, one can manage to use a wideband high-
speed ADC to convert the RF signal to digital. However, the
required sampling rate for the ADC could often be too high to
be attained if the Nyquist sampling theorem is to be satisfied
[4]. Alternatively, being aware of the bandpass nature of the
radio signal, one can use the bandpass sampling [5] instead to
directly downconvert the desired RF signal from the RF to an
intermediate frequency (IF). This can significantly relax the
demand for fast ADCs and digital signal processors (DSPs)
in a SDR design.

In military and commercial SDRs, there is a need for a
single radio to communicate simultaneously with many radios
using different RF bands and different modulation schemes
[2], [6], [7], [8]. To attain this goal, methods for direct
downconversion of multiband RF signals using a single ADC
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Fig. 1. (a) The SDR receiver front end. (b) The spectrum of the multiband
RF signal at the input of the ADC.

may be appreciated. One possible SDR receiver front end
design fulfilling this purpose is shown in Fig. 1(a) [9], where
the input signal to the ADC would be a multiband RF signal
whose spectrum is like that shown in Fig. 1(b). A method to
determine the bandpass sampling frequency for the ADC in
Fig. 1(a) has been proposed in [9]. This method, however, is
computationally intensive. Its computational complexity can
be alleviated to certain extent by using the method presented
in [10].

In this paper, a novel method is proposed to obtain the
valid bandpass sampling frequency ranges for direct down-
conversion of multiband RF signals. In the proposed method,
we first observe that a valid sampling frequency must not
cause aliasing in the sampled signal. To be immune from
aliasing, the spectral replicas (which are produced by sam-
pling) of the signals at different bands must be positioned
in frequency in a particular order without overlapping in the
sampled signal spectrum. By analyzing the constraints on the
sampling frequency for all the possible orders of spectral
replicas, we derive an efficient procedure for finding the valid
sampling frequency ranges. Compared to the conventional
approach, the proposed method is superior in the sense of
both computational complexity and ease of implementation.
Computer simulation on direct downconversion of multiband
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Fig. 2. The dual-band signal shown in Fig. 1(b) (assuming M = 2) after
bandpass sampling. The 8 possible replica orders are shown in (a) to (h). The
parameters εLi

and εHi
(i = ±1,±2) are defined in (a), (d), (f), and (g).

GSM signals is conducted to demonstrate the usage of the
proposed method.

II. BANDPASS SAMPLING DUAL-BAND RF SIGNALS

Consider the problem of sampling a dual-band RF signal
whose spectrum is like that shown in Fig. 1(b) with M = 2. To
be immune from aliasing, the sampling frequency fs needs to
be chosen without causing spectral overlapping in the sampled
signal spectrum. This leads to the 8 possible replica orders
shown in Fig. 2, where we use shaded trapezoids to denote
the spectrum of the original signal, and solid and dashed
trapezoids to denote the replicas for positive-frequency and
negative-frequency spectra, respectively.

For a given replica order, the sampling frequency must
satisfy two types of constraints: one is referred to as the
neighbor constraint and the other is referred to as the boundary
constraint in this paper. Note that, as shown in Figs. 2(a) and
2(b), the replicas ‘1’ and ’2’ are neighbors in the first half of a
segment in Case 1 and in the second half of a segment in Case
2. Since the positions of replica ‘i’ and ‘−i’ are symmetric
with respective to the midpoint of a segment, one can also
see from Figs. 2(a) and 2(b) that the replicas ‘-2’ and ‘-1’ are
neighbors in the second half of a segment in Case 1 and in the

TABLE I
THE NEIGHBOR CONSTRAINTS FOR THE 8 CASES IN FIG. 2.

Group Neighbors Case Shorthand Constraint

1
〈 1, 2〉 1

εH1 ≤ εL2 fs ≤ fL2−fH1
n2−n1〈-2,-1〉 2

2
〈 1,-2〉 3 εH1 ≤ εL−2 fs ≥ fH1+fH2

n1+n2+1〈 2,-1〉 4

3
〈-1, 2〉 5 εH−1 ≤ εL2 fs ≤ fL1+fL2

n1+n2+1〈-2, 1〉 6

4
〈-1,-2〉 7 εH−1 ≤ εL−2 fs ≥ fH2−fL1

n2−n1〈 2, 1〉 8

first half of a segment in Case 2. If those cases having the same
neighboring replicas in either the first or the second half of a
segment are considered as in one group, we may categorize
the 8 cases in Fig. 2 into 4 groups, as shown in Table I,
where the neighboring relation between two replicas j and k
is denoted by 〈j, k〉. The two cases in each group have the
same neighboring replicas and thus share the same neighbor
constraint. However, they have different boundary constraints
because the neighboring replicas show up in different halves
of a segment.

For simplicity, we define εLi and εHi (i = ±1,±2) as
the relative lowest and highest frequencies of replica ‘i’ in
a segment, as shown in Figs. 2(a), 2(d), 2(f), and 2(g). By
comparing Figs. 2(a), 2(d), 2(f), and 2(g) to Fig. 1(b), one
can easily see that

εHi = fHi − nifs, i = 1, 2, (1)
εH−i = (ni + 1)fs − fLi , i = 1, 2, (2)
εLi = fLi − nifs, i = 1, 2, (3)

εL−i = (ni + 1)fs − fHi , i = 1, 2. (4)

In deriving (2) and (4), we have used the following relations

εH−i = fs − εLi , i = 1, 2, (5)
εL−i

= fs − εHi
, i = 1, 2, (6)

which are due to the fact that the relative positions of the
replicas ‘i’ and ‘−i’ in each segment are symmetric with
respect to the midpoint of the segment.

Let’s consider the neighbor constraint first. From Table I
we see that the neighboring relation in Group 1 is 〈1, 2〉
(or equivalently, 〈−2,−1〉). This relation may be written in
a shorthand representation as εH1 ≤ εL2 (see Fig. 2(a)),
which can lead to fs ≤ fL2−fH1

n2−n1
with the aid of (1) and (3).

Similarly, one can easily find the shorthand representations
of the neighbor relations and their corresponding constraints
on fs for the other three groups. The result is summarized
in Table I. The boundary constraints for each case can be
obtained by observing Fig. 2. Taking Case 1 as an example,
the neighboring replicas 〈1, 2〉 must be completely inside the
first half of a segment. We therefore see from Fig. 2(a) that
the shorthand representations of the boundary constraints for
spectra ‘1’ and ‘2’ are εL1 ≥ 0 and εH2 ≤ fs/2, respectively,
which can result in fs ≤ fL1

n1
and fs ≥ fH2

n2+1/2 by using (1)
and (3). Following the same procedure, it is straightforward to
derive the boundary constraints for all other cases. The result
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TABLE II
THE BOUNDARY CONSTRAINTS FOR THE 8 CASES IN FIG. 2.

Spectrum Group Case Shorthand Constraint

‘1’

1
1

εL1 ≥ 0 fs ≤ fL1
n13

2
2

εH−1 ≤ fs
2 fs ≤ fL1

n1+1/24

3
5 εL−1 ≥ 0 fs ≥ fH1

n1+17

4
6

εH1 ≤ fs
2 fs ≥ fH1

n1+1/28

‘2’

1
4

εL2 ≥ 0 fs ≤ fL2
n28

2
3

εH−2 ≤ fs
2 fs ≤ fL2

n2+1/27

3
2 εL−2 ≥ 0 fs ≥ fH2

n2+16

4
1

εH2 ≤ fs
2 fs ≥ fH2

n2+1/25

is listed in Table II. Note that the boundary constraints for
spectra ‘1’ and ‘2’ are listed separately in Table II. For each
spectrum i (i = 1, 2), its boundary constraints for the 8 cases
can be categorized into 4 groups. Each group includes 2 cases
which share the same boundary constraint.

A valid sampling frequency must satisfy both the neighbor
and boundary constraints. By combining Tables I and II, one
obtains Table III (here j = 1, k = 2, and M = 2), where the
ranges of valid sampling frequency for the 8 cases in Fig. 2
are shown.

III. BANDPASS SAMPLING M -BAND RF SIGNALS

In this section, the analysis described in Section II is
extended to RF signals with an arbitrary number of bands.
Consider an M -band RF signal shown in Fig. 1(b). When
the M -band RF signal is sampled at fs Hz, the spectrum
of the sampled signal can be obtained by replicating the
spectrum of the original signal at multiples of fs. Due to
spectral replication, there will be a replica of spectrum ‘i’
(i = 1, 2, . . . ,M ) and a replica of spectrum ‘−i’ in each
segment of the spectrum of the sampled signal. For each pair
of replicas ‘i’ and ‘−i’, there are two choices of ordering them
in a segment: placing replica ‘i’ in the first half and replica
‘−i’ in the second half, or the other way around. Since there
are M such pairs of replicas need to be allocated in a segment,
the total number of choices is equal to 2M . To be immune
from aliasing, the M replicas allocated to the first half of a
segment can not overlap. Hence there are M ! ways of ordering
the allocated replicas. Therefore, the total number of possible
replica orders in one segment is equal to 2M ×M !.

For each possible replica order in the first half of a segment,
say, 〈i1, i2, . . . , iM 〉 (im ∈ {±1,±2, . . . ,±M} for m =
1, 2, . . . , M ), there are M − 1 neighbor constraints on the
neighboring relations 〈i1, i2〉, 〈i2, i3〉, . . ., 〈iM−1, iM 〉 and 2
boundary constraints on replicas ‘i1’ and ‘iM ’. The neighbor
constraint on any neighboring relation, say, 〈j, k〉, can be
written in shorthand as εHj ≤ εLk

. The boundary constraint
on a replica, say, ‘j’, in the first half of a segment is either
εLj ≥ 0 (if replica ‘j’ is ordered the first) or εHj ≤ fs

2 (if

replica ‘j’ is ordered the last). The corresponding constraints
on fs for the shorthand representations can then be easily
obtained with the aid of (1)-(4). By combining all the neighbor
constraints on the neighboring relations 〈i1, i2〉, 〈i2, i3〉, . . .,
〈iM−1, iM 〉 and the boundary constraints on ‘i1’ and ‘iM ’,
one can obtain the range of valid sampling frequency for the
replica order 〈i1, i2, . . . , iM 〉.

IV. SEARCHING FOR THE RANGES OF
VALID SAMPLING FREQUENCY

The derivation in Sections II and III shows how one can
obtain the range of fs for a particular replica order provided
that ni (i = 1, 2, . . . , M ) are given. Since ni is the index of
the segment where spectrum ‘i’ is located, we have

n1 =
⌊

fL1

fs

⌋
≤

⌊
fL1

2(B1 + B2 + · · ·+ BM )

⌋
(7)

where bxc denotes the largest integer less than or equal to x,
and B1, B2, . . ., and BM are defined in Fig. 1(b). In deriving
(7), we have used the fact that the bandwidth of a segment
should at least accommodate the 2M nonoverlapping replicas
‘1’, ‘-1’, ‘2’, ‘-2’, . . ., ‘M ’, and ‘−M ’ (i.e., fs ≥ 2(B1+B2+
. . . + BM )). In addition, the center frequency of spectrum ‘i’
(say, fi) is bounded by

nifs < fi < (ni + 1)fs. (8)

Multiplying (8) by Ri

fs
and using the relation fi+1 = Rifi (see

Fig. 1(b)), one obtains

Rini <
fi+1

fs
< Ri(ni + 1), i = 1, 2, . . . ,M − 1 (9)

Taking b c on (9) and using the fact that ni+1 =
⌊

fi+1
fs

⌋
, we

have

bRinic ≤ ni+1 ≤ bRini + Ric , i = 1, 2, . . . ,M − 1. (10)

We see that the possible values of ni+1 can be determined
given ni.

Based on the above analysis, we may summarize the proce-
dure for obtaining the ranges of valid sampling frequency for
M -band RF signals as follows. First we choose an appropriate
n1 using (7), then we choose appropriate n2, n3, . . ., and
nM using (10). Given the (n1, n2, . . . , nM ), we find the
neighbor and boundary constraints for each of the 2M ×M !
possible replica orders. The combination of all the constraints
yields the range of valid sampling frequency. The above
procedure (called the standard procedure hereafter) is con-
ceptually straightforward. However, for typical applications,
one may find that examining all the possible replica orders
eventually ends up with only few valid replica orders which
yield nonempty sampling frequency ranges.

An alternative procedure to find the valid replica orders
and their corresponding sampling frequency ranges for an
M -band RF signal is to modify the standard procedure as
follows. For a given (n1, n2, . . . , nM ), we first determine the
valid replica orders for every pair of bands in the M bands.
Namely, for any pair of bands, say, the j-th and k-th bands,
one can use the procedure described in Section II for dual-
band RF signals to determine the valid sampling frequency
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TABLE III
THE RANGES OF VALID SAMPLING FREQUENCY FOR THE DUAL-BAND

SIGNAL CONSISTING OF THE j-TH AND k-TH BANDS OF AN M -BAND RF
SIGNAL.

Case Range of Valid fs

1
fHk

nk+ 1
2
≤ fs ≤ min{ fLj

nj
,

fLk
−fHj

nk−nj
}

2
fHk

nk+1
≤ fs ≤ min{ fLj

nj+ 1
2

,
fLk

−fHj

nk−nj
}

3
fHj

+fHk

nj+nk+1
≤ fs ≤ min{ fLj

nj
,

fLk

nk+ 1
2
}

4
fHj

+fHk

nj+nk+1
≤ fs ≤ min{ fLj

nj+ 1
2

,
fLk
nk

}

5 max{ fHj

nj+1
,

fHk

nk+ 1
2
} ≤ fs ≤

fLj
+fLk

nj+nk+1

6 max{ fHj

nj+ 1
2

,
fHk

nk+1
} ≤ fs ≤

fLj
+fLk

nj+nk+1

7 max{ fHj

nj+1
,

fHk
−fLj

nk−nj
} ≤ fs ≤ fLk

nk+ 1
2

8 max{ fHj

nj+ 1
2

,
fHk

−fLj

nk−nj
} ≤ fs ≤ fLk

nk

ranges for all the possible replica orders. The result would
be that shown in Table III. Such a table is constructed for
each pair of bands in the M bands, hence we have CM

2

tables like Table III. It is easy to see that an M -band replica
order, say, 〈i1, i2, . . . , iM 〉, is a valid replica order (which
yields a nonempty sampling frequency range) only if 〈i1, i2〉,
〈i2, i3〉,. . ., and 〈iM−1, iM 〉 are valid dual-band replica orders.
That is, a valid M -band replica order must be a concatenation
of valid replica orders in those CM

2 tables like Table III.
Therefore, one can consider only those M -band replica orders
which can be concatenated with the valid dual-band replica
orders in the CM

2 tables instead of all the possible M -band
replica orders. Suppose the number of the M -band replica
orders which can be concatenated with the valid dual-band
replica orders is small, it is shown in the Appendix that this
alternative procedure can be more computationally efficient.

V. COMPUTER SIMULATION - DIRECT DOWNCONVERSION
OF GSM SIGNALS

To demonstrate the usage of the proposed method, we
conducted two simulations on direct downconverting GSM
signals [11]. In the first simulation, the SDR receiver front end
in Fig. 1(a) with M = 2 was used to directly downconvert the
entire service bands of GSM 900 (935-960 MHz) and GSM
1800 (1805-1880 MHz) systems. Therefore, the input signal to
the ADC is a dual-band RF signal like that shown in Fig. 1(b)
with M = 2, where f1 = 947.5, f2 = 1842.5, B1 = 25, and
B2 = 75 MHz.

Given the problem, we utilized the proposed method to find
the ranges of valid sampling frequency. The result is shown in
Table IV. In obtaining Table IV, we found that there were 12
possible (n1, n2)’s to be considered. Since Table III demands
35 operations (see Appendix), we see that 12 × 35 = 420
operations were used to obtain Table IV. If the method in [9]
were used instead, testing the validity of all the frequencies
from 100 to 935 MHz would be required. Even if the tests
were conducted in steps of 1 MHz, we would still need 835
tests (each needs 12 operations). The number of tests could
be reduced to 442 by using the method in [10]. However, the

TABLE IV
THE RANGES OF VALID SAMPLING FREQUENCY FOR THE DUAL-BAND

GSM SIGNAL.

n1 n2 Case Range of Valid fs (MHz)
3 7 7 240.000000 ≤ fs ≤ 240.666667
2 5 7 320.000000 ≤ fs ≤ 328.181818
2 5 5 341.818182 ≤ fs ≤ 342.500000
2 5 4 355.000000 ≤ fs ≤ 361.000000
2 4 6 384.000000 ≤ fs ≤ 391.428571
2 4 1 417.777778 ≤ fs ≤ 422.500000
1 3 7 480.000000 ≤ fs ≤ 515.714286
1 3 5 537.142857 ≤ fs ≤ 548.000000
1 3 4 568.000000 ≤ fs ≤ 601.666667
1 2 6 640.000000 ≤ fs ≤ 685.000000
1 2 3 710.000000 ≤ fs ≤ 722.000000
1 2 1 752.000000 ≤ fs ≤ 845.000000

number of involved operations (442× 12 = 5304) would still
be way larger than that for the proposed method.

In the second simulation, the SDR receiver front end in
Fig. 1(a) with M = 3 was used to receive signals from the
GSM 900, GSM 1800, and GSM 1900 (1930-1990 MHz)
systems. Therefore, the input signal to the ADC is a three-band
RF signal. Given the received signal, we utilized the procedure
described in Section IV to search for ranges of valid sampling
frequency. Only 5 ranges of valid sampling frequency were
found for all possible (n1, n2, n3). By taking a closer look,
we found that all the 5 ranges have n1 = 1. With such a small
value of n1, the valid sampling frequencies in the 5 ranges are
all higher than about 600 MHz. One way to lower the sampling
rate is by using BPFs with bandwidths narrower than the GSM
service bands in Fig. 1(a) to prefilter the received signal. By
varying the center frequencies of the BPFs, any channel in the
GSM service bands can be preselected as wanted.

As an example, in this simulation we assumed that three
BPFs centering at f1 = 936, f2 = 1806, and f3 = 1931 MHz
and having a bandwidth of 2 MHz were used in Fig. 1(a).
Hence the resulting signal to the ADC has three bands, where
bands 1, 2, and 3 are at 935-937, 1805-1807, and 1930-
1932 MHz, respectively. Using these parameters and following
the procedure described in Section IV, a total of 611 ranges
of valid sampling frequency were obtained for all possible
(n1, n2, n3). By examining the 611 valid ranges we found
that, although the number of possible replica orders is 48, the
maximum number of replica orders which can be concatenated
with the dual-band valid replica orders is L = 14 for a
given (n1, n2, n3). Using the formulas in the Appendix we
see that, in this case, the alternative procedure should be
more computationally efficient than the standard procedure.
To verify this, both the standard and the alternative procedures
were used. The result shows that the alternative procedure
indeed requires about 13% less CPU time than the standard
procedure.

VI. CONCLUSION

In this paper, we have presented an efficient method to
determine the ranges of valid bandpass sampling frequency
for multiband RF signals. The result can be used to efficiently
choose an appropriate bandpass sampling frequency for the
ADC in a multiband SDR receiver front end. Note that the
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selection of the sampling frequency could be more flexible if
nonuniform sampling is allowed, but this would complicate
the design of the direct downconverter. It could be beneficial
if the sampling process is synchronized with the carrier of the
transmitted RF signal. For example, one might be able to use
the digital quadrature sampling technique [12] to simplify the
data acquisition process.

There are some practical issues to be considered before
using the proposed method. Firstly, in performing bandpass
sampling, the analog input bandwidth of the ADC needs to
meet the spectral range of the RF signals [3]. This is challeng-
ing because the attainable maximum analog input frequency
of the ADC is limited by its aperture jitter [4]. Secondly, the
relatively large sampling rate used by the proposed scheme
suggests that high power dissipation is required [13]. This
situation can only be improved through the advances of low
power consumption ADC technologies (such as the CMOS
technology). Thirdly, since the second-order or third-order
product distortions caused by nonlinearities in the system
could be downconverted to appear in the desired bands, special
care should be taken in choosing the sampling frequency in
case that nonlinearities exist. Lastly, the prefiltering RF filters
need to have steep rolloffs to provide sufficient attenuation
of adjacent channel signals, otherwise aliasing may occur in
the sampled signal. The currently available RF filters (surface
acoustic wave (SAW) or ceramic) have limited stopband
attenuation and are designed for a fixed center frequency and
a fixed bandwidth. They are not suitable for the proposed
flexible filtering scheme. This might be able to be solved by
using a micro-electro-mechanical structure (MEMS) filter in
the future [14].

APPENDIX

It is easy to see that Tables I, II, and III require 7, 12,
and 35 operations (adds, divides, or compares) for a given
(n1, n2). For an M bands RF signal, we need to consider
CM

2 neighbor constraint tables like Table I and CM
2 boundary

constraint tables like Table II for a given (n1, n2, . . . , nM ).
These tables require 7CM

2 + 12CM
2 = 19CM

2 operations. In
addition, to see whether a particular replica order is valid, we
need M compares. Since there are 2M ×M ! possible replica
orders, we need a total of M × 2M ×M ! compares for each
(n1, n2, . . . , nM ). The total number of operations required for
the standard procedure is thus M × 2M × M ! + 19CM

2 for
each (n1, n2, . . . , nM ). If the alternative procedure is used,
we need to consider CM

2 dual-band valid sampling frequency
tables like Table III, which requires 35CM

2 operations. If the
number of replica orders which can be obtained by concate-
nating the valid dual-band replica orders in the CM

2 tables

is L for a given (n1, n2, . . . , nM ), we will need additional
L× (2M − 3) compares to see whether the L replica orders
are valid. The total number of operations required for the
alternative procedure is thus 35CM

2 + L × (2M − 3) for
each (n1, n2, . . . , nM ). For typical applications, the number
L is significantly smaller than the total number of replica
orders 2M ×M !. Therefore, the alternative procedure is more
computationally efficient when M is large. For example, if
M = 3 and L = 14, the numbers of operations required by
the standard and the alternative procedures are 201 and 147,
respectively. The difference between the two numbers will in
general increase with M .
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