
As an illustration, in Table 1 the values of the peak factor for 
BPSK are presented, while in Table 2 the values of the peak factor 
for QPSK are shown. 

BER penalty: In the process of reducing the PF, the amplitude of 
dm)(t) for some rn has been reduced. As a consequence the BER of 
x,(t) will increase. This is in fact the price paid for the reduction of 
the PF. In Fig. l a  curves of BER for BPSK against SNR are 
shown: the broken line shows the BER for x(t), while the solid line 
shows the BER for x,(t). The SNR penalty at BER = is ~ 1 ,  2 
and 2.SdB for N = 4, 8 and 12, respectively. 

Conclusion: A method for MCM with low peak factor is presented 
for which the net bit rate remains the same as for standard MCM. 
However the BER is slightly higher than that in standard MCM. 
This BER degradation may be effectively improved by using FEC. 

The proposed method is very simple for on-line implementation: 
it is required only to measure the maximal value of the modulated 
signal for each symbol, and then to attenuate or amplify the signal 
accordingly. 

The off-line calculation of the value of the PF is very time con- 
suming for large N. 
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Practical consideration for bandpass 
sampling 

Ronggang Qi, F.P. Coakley and B.G. Evans 

Indexing terms: Digital communication systems, Sampling theory 

The uniform bandpass sampling theorem has been m o ~ i e d  to 
cope with sampling frequency instability and carrier frequency 
variations. Minimum sampling rates for given samplig and 
carrier frequency variations are derived. A robust bandpass 
sampling method is proposed which requires the sampling 
frequency to be such that the carrier frequency is on the 1/4 or -I/ 
4 sampling frequency grid. 

Introduction: The sampling of bandpass signals is often encoun- 
tered in digital communication systems. To sample a bandpass sig- 
nal it is usually down-converted to a frequency band near zero 
frequency with an analogue mixer (or pair of mixers for quadra- 
ture sampling), then sampled at a low Nyquist rate. Alternatively, 
it can be sampled directly at sampling frequencies lower than the 
Nyquist rate according to the first-order bandpass sampling the- 
ory [1, 21. For a single-side-band (SSB) signal centred at the car- 

rier frequency f ,  with one-sided bandwidth B, the required 
theoretical minimum sampling rate is [3, 41 

where I = Lf,iB + 0.51 h.1 denotes the floor function). The mini- 
mum sampling rates are graphically shown by the upper edge of 
the dark shaded area in Fig. 1, in which the sampling and the car- 
rier frequencies are normalised by B, and 112 < (T < 112. It has been 
shown that sampling at frequencies higher than the theoretical 
minimum does not necessarily guarantee aliasing-free sampling, 
unless the following condition is met [5, 61: 

where n, 1 I n 5 I, is referred to as the wedge order. The n = 1 
case is obviously the Nyquist sampling rate, while n = I corre- 
sponds to the minimum sampling rate. Eqn. 2 defines I wedge- 
shaped non-contiguous operating regions of aliasing-free sam- 
pling. In between, there are I-1 disallowed regions shown as 
lightly shaded areas in Fig. 1. 

fs(mzn) = (2fc + B)/I (1) 

( 2 f c  + B ) / n  I f s  I (2fc - W / ( n  - 1) (2) 

0 2 G 6 
f,lB 

Fig. 1 Minimum and acceptable sampling frequencies 
f J B  = I + (T 

(i) n = 1 
(ii) n = 2 
(iii) n = 3 

Direct bandpass sampling takes advantage of eliminating the 
use of analogue mixer(s), hence is free of the DC offset effect 
introduced by analogue mixer(s) and, for quadrature bandpass 
sampling, free of mismatch of gain and phase between I and Q 
channels due to non-ideal mixers and AID converters. It tends 
however to be sensitive to variations in both the carrier and the 
sampling frequencies. 

fs 

2 8  

(n-0.516 fc-A, f, f , + A ,  
fC m 

Fig. 2 Operation region in nth wedge 

Practical consideration of minimum sampling rates: The minimum 
sampling rate of eqn. 1 does not take into account the instability 
of the sampling and carrier frequencies, which would pull the 
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operating point away from the allowed region, causing aliasing. 
To modify eqn. 1, consider the nth wedge of the allowed region in 
Fig. 1. The wedge is confined by two intersecting lines, J; = 
(2A - B)i(n - 1) andA = (2A + B)in, wheref, 2 (n - 0.5)B. Instead 
of requiring a single operating point cf,, A) being within the wedge, 
a neighbouring area (shown as the shaded rectangle in Fig. 2 and 
defined by A, and A$ which are, respectively, the deviations of fc 
and J; due to their uncertainties) should be within the wedge for 
aliasing-free sampling. The minimum sampling frequency in the 
wedgef,(man)(n) can be determined by letting the lower right comer 
of the rectangle on the lower edge and the upper left corner below 
the upper edge of the wedge as shown in Fig. 2, i.e. 

f imzn)(n) - A, i + A,) + ~ ] / n  ( 3 )  

fs(mzn)(n) + <: [ 2 ( f c  - A,) - B]/(n - 1) (4) 
In practice, A3 is usually given in terms of the relative precision 
(stability) off,: A$ = pJ;, (e.g. ps = lP3  for a moderate RC oscilla- 
tor and ps = 1t5 for a crystal). From eqns. 3 and 4, for given A, 
Ac, and p3, to minimiseAf;(min)(n), the largest n must be used. Hence 

where 

Clearly, the theoretical minimum sampling rate of eqn. 1 is a spe- 
cial case of eqns. -5 and 6 withp, = Ac = 0. 

Maximum folerance to carrier frequency variations: In radar, 
sonar, and mobile satellite communication systems the received 
bandpass signals are subjected to the Doppler effects causing off- 
sets in the carrier frequencies. Other than requiring the minimum 
sampling rate for given sampling frequency stability and carrier 
frequency variation, for these applications, we can slightly relax 
the sampling frequency while maximising the tolerance to the car- 
rier frequency variation, as long as a minimum guard band is sat- 
isfied. In so doing, we fix the height of the rectangle in Fig. 2 and 
let its width be variable, and then move it along the vertical line tf, 
= the carrier frequency’ until it is equally divided by the line and is 
tangential to the wedge (the dotted rectangle shown in Fig. 2). 
Thus in this case, eqn. 3 still holds whereas eqn. 4 takes the equal 
sign. 

The sampling frequency and the guard band can be therefore 
determined by 

(7) 

( 8 )  

4 f c  

2(1 - (2n - l ) p , ) f ,  - (an - 1 - p,)B 
2(2n - 1 - p s )  

f s  = 2n - 1 - p a  

A, = 

Since 2n-1 > ps, from eqn. 7, the carrier and the sampling fre- 
quency are approximately related by 

( J +  1/4)fs J = (n  - l ) / 2  for n odd 

eqn. 9 defines a set of lines intersecting at the origin (dotted lines 
in Fig. 1). Besides the main advantage of being tolerant to carrier 
frequency uncertainty, the ‘i4J; (or -‘i4f,) stacking of carrier can 
also reduce computations in digital (Hilbert) processing [2] and 
lead to a multiplierless frequency shifter for spectral manipula- 
tions. 

(9) f & { (  J - 1/4)fs J = n /2  for n even 

Example: Consider a real SSB bandpass signal centred at A = 
140MHz with B = 12.5MHz, which requires a theoretical min- 
mum sampling frequency of 25.4-55MHz (eqn. 1). Assuming pJ = 

and Ac = 900kHz, the practical minimum sampling frequency 
can be determined asJf;‘min) = 29.433MHz using eqns. 5 and 6. If 
high tolerance to carrier variation is desired, thenf, = 29.474MHz 
according to eqn. 9, which gives Ac = 1.104MHz. 

Conclusions: The theoretical minimum sampling rate for bandpass 
signals needs to be modified when sampling frequency instability 
and carrier frequency uncertainty are taken into account. The 
modified uniform bandpass sampling theorem is more practical 
for engineering use. Tolerance to sampling frequency variation 

and carrier uncertainty is maximised if the operating region in the 
nth wedge is tangential to the wedge edges and the operating point 
is at the centre of the region, which leads to ‘i4J (for IZ odd, or 
-‘i4f, for n even) stacking of carrier. In addition, it also has the 
advantage of simplifying digtal processing and allowing a simple 
quadrature sampler structure to be used. 
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TMF signal c~assification via p 
cascade identifica~ion 

M.J. Korenberg and P.W. Doherty 

Indexing terms: Keyboardr, Pattern classification, Signal 
processing, Telephone equipment 

The parallel cascade identification of nonlinear systems is used for 
the rapid recognition of dual tone multi-frequency (DTMF) 
signals, i.e. the ‘dual tones’ used to encode the digits on a 
telephone keypad. The authors demonstrate that parallel cascades 
can correctly identify DTMF signals with half or less than half of 
the input data required by current methods. 

Introduction: The parallel cascade identification [ 11 of nonlinear 
systems has already been successfully used to identify and classify 
a variety of signals. In this Letter, we focus on the rapid recogni- 
tion of standard telephony DTMF signals. Since DTMF was first 
introduced in the 1960s as a replacement for dial pulse signalling, 
its use has expanded to include such applications as remote data 
entry, voice mail, and automated attendant positions. The primary 
benefit of DTMF over dial pulse is increased efficiency, as a result 
of reduced holding times for signal detection and recognition 
hardware. Rapid identification of DTMF signals will reduce hold- 
ing times further, greatly increasing the service capacity of DTMF 
receivers. 

DTMF signals are characterised by the superposition of two 
sinusoidal tones; these signals consist of one tone each from the 
high (1209, 1336, 1477, and 1633Hz) and low (697, 770, 852, and 
941Hz) groups of frequencies. Accurate identification of the 16 
possible digits thus requires distinguishing between frequencies 
separated by as little as 127Hz in the high band, and 73Hz in the 
low band. 

Current DTMF detection and classification methodology, while 
for the most part proprietary, relies primarily on one or more of 
the following techniques: narrowband digital filtering [2], spectral 
analysis via discrete Fourier transfomi [3], and counting zerol 
extrema crossings [4]. Each of the above methodologies has an 
inherent latency required to determine the correct received signal 
(i.e. recognise the DTMF digit). This latency ranges from a low of 
46-50 samples for digital filters (following lowpass filtering of the 
input signal), to 15CL200 samples for zeroiextrema crossings. A 
standard sampling frequency of 8 kHz is assumed for all methodol- 
ogies. 
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