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Introduction
In the last lecture, we have come across the designing concepts of single 
dish radio telescopes and phased arrays (technically an additive array, 
where signals from different elements are added after time delay 
corrections). Yet there is another kind of array know as interferometer 
array (technically a multiplicative array, where signals from different 
antenna elements are multiplied after delay corrections). Majority of the 
radio arrays used for continuum observatiuons are interferometer arrays. 
The simplest interferometer consists of two antenna antennas. We shall 
begin here with a simple optical interferometer and then extend its 
concepts to a simple radio interterferometer....
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The radio wavelengths are much larger than optical wavelengths. Thus 
single dish radio telescopes have poor angular resolution as compared to 
optical telescopes. The resolution can be increased using antenna arrays 
with large spacings. An optical technique called interferometry consisting 
of a pair of telescopes was extended to radio for improving the resolution. 
This uses antenna arrays. We begin with the basic principles from optics.



  

Recall Raleigh Criterion ...

Point spread functionsImage from two stars
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Rayleigh criterion: Two point sources can be resolved with a single telescope 
if the angular separation between the two objects is at least equal to or greater 
than α' as expressed below:

where, λ is the wavelength and D is the diameter of 
the lens. 



  

Principles of Optical Interferometer
Consider the geometry shown on the left, where a 
distant monochromatic point source produces parallel 
rays near the vicinity of a convex lens of diameter D. 
The lens is shadowed by a plate having two small 
holes of diameter Δ. The holes act as apertures. 
Depending on the distance d between the holes, an 
interference pattern occurs on the screen.

Interference fringe pattern

If one of the holes 
is closed, the 
fringe vanishes, 
and the image 
pattern now
takes the shape of 
the fringe 
envelope. 

If the apertures are made 
infinitely small (Δ → 0), the 
fringe becomes uniform. Note 
that there is a large difference 
between the maxima and 
minima resulting in a good 
contrast. © Shubhendu Joardar



  

Principles of Optical Interferometer
Now consider two stars (point sources) 
of equal intensity and separated by an 
angle α as shown in left. 

If the holes have zero dimension 
(Δ → 0), and if the stars are 
monochromatic having same 
wavelength λ, two fringes 
corresponding to each are formed.

If the holes have non-zero 
dimension the fringe 
pattern looks like as 
illustrated on left.

If both stars are aligned (α = 0), the two fringe patterns overlap each other, 
and resulting intensity is doubled. 
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Resolution of Optical Interferometer

Note:
If α is increased beyond α'', the fringes reappear and 
dissapear .... In general, the fringes are clearly 
visible when α = 2nα'', where n is an integer. The 
fringes disappear when α = (2n+1)α''.

The angle α'' is the resolution of the interferometer 
(radians), where λ is the wavelength and d is the center to 
ceter distance between the two holes. Note that d and λ  
should be in same units (length).
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The fringes cancel out if α = α'', 
because the maxima of one fringe 
pattern coincides with the minima of 
the other, where α'' is given by:

Here, d is the center to center distance between the holes.



  

Applying Raleigh Criterion ...
The angular separation of two monochromatic point sources at 
which the corresponding fringe patterns are mutually displaced 
by half a fringe is: 

where α' is the resolution of the lens aperture (Raleigh 
criterion):

Hence resolution is doubled, but aperture size is reduced. So two separate lens 
are used with an arrangement of mirrors to combine their outputs. Increasing 
the distance d of separation between the two apertures increases the angular 
resolution at any particular wavelength. 
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If the apertures are on the lens edges (d = D), then

In a radio interferometer, the two antennas may be considered as the two 
lenses. Hence the resolution of a radio interferometer is:



  

Visibility (Fringe Contrast)

where I
max

 and I
min

 respectively are two neighboring maxima and minima 
within the fringe. It quantifies the fringe contrast. The image posses 
maximum contrast if I

min
 = 0. Under these conditions, |V | = 1. No fringe is 

visible when I
min

 = I
max

, which is indicated by V  = 0.

The fringe pattern can be seen as long as contrast between bright and dark 
areas of the fringe are good. It depends on the intensity differences 
between fringe maxima and fringe minima. A dimensionless quantity 
known as visibility V  (also known as finge contrast) whose magnitude is 
expressed as:
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Note: Visibility V  is a complex number and its magnitude always lies 
between 0 and 1. The fringe is visibile if and only if magnitude of visbility 
is greater than 0. The fringe becomes more and more distinguishable as the 
magnitude of V  increases.



  

Coherence Length
Irrespective of source distance or wavelength λ, the 
brightest spot of the fringe always appear at the 
center of the image. However, the distance between 
a maxima and its neighboring minima depends on 
λ. If the source is polychromatic, a number of 
frequency components reach the screen whose 
phases differ depending on their wavelengths. Each 
of these interferes which effectively reduces the 
fringe contrast V . The path difference between two 
waves which results V = 0 is known as coherence 
length l

c
. It is given by: 

where, c is the speed of light, n
r
 is the refractive index of the medium, Δν is 

the band-width of light, λ is the wavelength, and Δλ is the wave-band of the 
source (also known as spectral width).
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Additive Radio Interferometer

Separation length d between the two is known as baseline. In terms of 
wavelength λ, the baseline is d

λ
 = d/λ. It resembles to a two element grating 

array. If the star is on the eastern sky, the wave-fronts first reach the East 
antenna, and after a time delay τ they reach theWest antenna.

Two antennas having 
identical characteristics are 
separated by a distance d 
and located near the 
equator along the East-West 
line. The main beams are 
towards zenith. As a radio 
star moves from East to 
West, the instantaneous 
outputs when added forms 
a fringe pattern as a 
function of time or angle θ 
(see next page). 

The adder output voltage V
i
 is a function of θ. 
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Fringe pattern (normalized output power vs. θ).

Fringe pattern of Additive Interferometer

Antenna beam patterns scale the incoming signals. Adder power output has a 
modulation of antenna beam pattern (along θ). P

i
(θ)

n
 is not equally spaced 

along θ. Relative delay increases with magnitude of θ, and acquires maxima at 
θ =± 90о. When the star is at zenith (θ = 0), τ = 0 and the adder power peaks.

When the source rises, τ is 
positive maximum: 
      τ = d/c
When the source sets, τ is 
negative maximum: 
      τ = -d/c 
When the source is at zenith, 
      τ = 0

Improvements: Antennas may track the source to avoid fringe modulation (by 
beam pattern). Before adding the signals, their phases should be corrected by 
introducing artificial time delay (instrumental time delay) so as to maximize 
the adder output. LNAs (next to antennas) can improve SNR.

P
n
(θ) - normalized power pattern of the antennas.

P
i
(θ)

n
 - normalized power output from the adder (fringe pattern).
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Multiplicative Radio Interferometer
● Antennas track the source.
● Instrumental delay τ

i
 is on.

● Signals are multiplied.

Geometric delay τ
g
 

(τ
g
 = d sinθ /c)  is 

balanced by  
instrumental delay τ

i
.

Right: Tentative sketch of 
multiplier output E

i
(θ) for the 

case when no instrumental 
delay correction is applied, 
i.e., τ

i
 =  0.

Multiplier Output: 
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where,



  

Multiplicative Interferometer with Correlator
● Antennas track the source.
● Instrumental delay τ

i
 is on.

● Signals are multiplied and 
integrated (correlator 
backend).

● Frontend amplifiers with 
gain G

LNA
 are added. 

v(t-τ
i
) - Voltage from East antenna.

v(t-τ
g
) - Voltage from West antenna.

v(t) - Voltage from East antenna.
v(t-Δτ) - Voltage from West antenna, where Δτ = τ

g
 - τ

i

Correlator inputs:

Adding τ
i
 to the time varibles in 

above we obtain the Equivalent 
correlator inputs as:

Correlator output:
(integration over 2T secs)

2T varies from several milliseconds to few seconds. It should be chosen much 
larger than reciprocal of the band-width Δν, where ν is frequency. © Shubhendu Joardar



  

Interferometer with Correlator continued ...
The upper limit of integration time is the duration of observation, which can 
be hours. Thus, for a very large integration, we may express r(Δτ) as:

Let H(ν) also be a voltage spectrum. Then |H(ν)|2 represents the power 
spectrum. The correlator output r(Δτ) can be related to |H(ν)|2 as:

Recall the Fourier transform Wiener-Khinchin relationship between square of 
voltage spectrum (power spectrum) S(ν) and the auto-correlation R(τ):

Its inverse relationship is

For a wide-band radio noise source, H(ν) resembles the pass-band shape of the 
receiving system. Thus, interferometer output as a function of time delay 
difference Δτ is a Fourier transform of cosmic signal’s power spectrum. The 
band-width of correlated cosmic signal is same as of the amplifiers.

© Shubhendu Joardar



  

Fringe Stop in Correlator Interferometer 
Let the antennas be tracking a source. Propagation delay d sinθ/c keeps 
changing with Earth rotation. If we compensate the geometrical delay τ

g
 = d 

sinθ/c by equal amount of instrumental delay τ
i
 such that Δτ = τ

g
 - τ

i
 = 0, then 

signals entering the correlator are in phase and interferometer output peaks. 
This point of observation on the sky is called the fringe stopping center. 

Propagation or geometric delay τ
g 

=
  
d sinθ/c keeps changing with time. It is 

possible to evaluate the time rate of change of τ
g
. If we do not compensate τ

g
 

with τ
i
, the fringe output will vary with time. This frequency is called the 

fringe frequency ν
fringe

. Please note that ν
fringe

 gets scaled with the type of 
correlator receiving system used. For example, the correlator system may be a 
heterodyne type with variants like lower side band, upper side band, double 
side band etc. For a correlator sytem without any IF conversion, the fringe 
frequency ν

fringe 
is expressed as time derivative of w:
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ν fringe=
d w
dt

where, w belongs to the u,v,w coordinate system.



  

Fringe Stop in Correlator Interferometer 

© Shubhendu Joardar

Two antennas A and B 
located at two different 
longitude-latitudes pair form 
an interferometer. Relative 
to a radio source, the 
correlator baseline AB are 
shown for three different 
time instants t

1
, t

2
, t

3
, where 

t
1
 < t

2
 < t

3
. Projection of AB 

on u-v plane and source 
distance along w change 
with Earth rotation. 

Angular frequency of Earth rotation ω
e
 is related to hour angle H as:

With  δ as source declination, we may expand fringe frequency as:

In a RF correlator, 
w = cτ

g
.  Hence,



  

Fringe Stop in Correlator Interferometer 

Note: Modern interferometers use heterodyne systems. They compensate τ
g 
at 

the IF (not at RF). Hence, visibility at any direction other than the fringe stop 
center changes slowly due to the rotation of the baseline with respect to the 
source. Integrator time constant should be short enough to observe these 
variations. If delay is compensated in the RF stage, fringe stopping is 
possible in any direction.
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We have seen:
   (i) Fringe frequency depends on angular frequency of Earth rotation.

(ii) Geometric delay continuously changes with Earth rotation.

Interterometers should therefore cancel the geometric delay τ
g 

with equal 
amount of instrumental delay τ

i
 to remove the effect of Earth rotation. In other 

words, interferometers should achive the fringe stop condition.



  

Gaussian Passband response: Corr. Inter.

© Shubhendu Joardar

Assume the amplifier pass-bands as 
Gaussian shaped, centered at a 
frequency ν

0
 and have a band-width 

factor σ. Hence their band-width at 
half maxima is (8 ln2 σ)0.5 as shown. 
The power spectrum can be expressed 
as a sum of two Gaussian functions 
(for left and right halves of the filter 
response around ν

0
):

The response is shown. Note that 
r(Δτ) is a cosine wave modulated 
by a Gaussian envelope. 

We also know that:

Substituting |H(ν)| we get: 



  

Note:
For a rectangular passband, the 
correlator output is shown on right:

Gaussian Passband Response continued ...

We find that wide band-widths (large σ) and large baselines (large d) result in 
narrow fringe envelopes if delay is not compensated. 

The fringe envelope is considered nuisance for most mapping applications, 
except in VLBI. Generally, one uses the fringe where its amplitude is optimum. 
It is done by always maintaning τ

i
 equal to τ

g 
such that Δτ→0. For practical 

purposes, τ
i
 is adjusted in time steps of the order of the ν

0
-1.
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The Gaussian response was:

Substituting Δτ =  τ
g 
=  d sin θ/c in r(Δτ) we get:

Now consider the case when geometric delay is not compensated by 
instrumental delay, i.e.,  τ

i
 = 0 so that Δτ =  τ

g 
= d sin θ/c.



  

Let v
1
(t) and v

2
(t) be cosine waves with 

frequency ν and having phase shifts α
1
 and 

α
2
. and amplitudes A

1
 and A

2
 respectively.

Simple Correlators

A simple correlator.

Input (volts): 
        v

1
(t), v

2
(t) 

Output (volts square, time averaged):
        r(τ) = < v

1
(t) v

2
(t) >

Thus we see that correlator output r(τ) depends on the phase difference between
the two signals. The output is maximum when the phase difference is zero.

The product of  V
1
(t) and V

2
(t) before integration is: 

Since integrator acts as a low pass filter, it removes the higher frequency 
components. Thus the output after integration is:
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The real output (cos) depends only on the phase difference. The imaginary 
output (sin) also depends on phase difference but has an added phase difference 
of π/2 in one of the two signals. Complex correlators gives information about 
both amplitude and phase. Since both channels are independent of each other, 
noise immunity of a complex correlator is √2 times better.

Complex Correlators

A complex correlator.

Inputs:
   v

1
(t) and v

2
(t) - Cosine waves with 

frequency ν, having phase shifts α
1
 and α

2
 

and amplitudes A
1
 and A

2
 respectively.

Outputs:
   Product of one signal with complex conjugate 
of the other and integrated over a period of time. 
It contains real and imaginary parts known as cos 
and sin.
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Correlator Arrays, Cross-Correlator

No. of self-correlations:
   It is same as number of 
antennas n

a
.

No. of cross-correlations n
c
:

   It is naC
2
 expressed as:

A correlator array with four 
antennas (single polarization) 
are shown on right.

If the self-correlations are removed, it is called a cross-correlator, and the 
instantaneous sensitivity of the array reduces by a factor κ

c
.

This loss becomes negligible if n
a
 >> 1. Thus for a large array, radio maps can 

be constructed from cross terms alone without degrading its quality.



  

Cross-Correlator Arrays vs. Phased Arrays
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● The response of a point source using a cross-correlator array is same as of
a phased array, except for missing self terms in the former.

● If the source is extended, cross-correlator gives complete information,
whereas phased array catch signals at equal phase intervals within the
main beam and side-lobes.

● Since the self terms are absent, the cross-correlator output can be positive
and negative, whereas the phased array output is always positive for it uses
a square law detector.

● The signal to noise ratio obtained from cross-correlation is better than of
a phased array. The reason being, correlator gathers the coherent signals.
The noise being incoherent from different antenna, they tend to diminish.
Hence cross terms are more important than self terms. A phased array
adds both noise and signals, so the noise cancellation is less.

As said before, if we remove the self components from the correlator array, it 
becomes a cross-correlator. We now compare it with a phased array:



  

Right: A heterodyne correlator 
receiving system using two 
antennas of an array. The geometric 
delay τ

g
 is nullified by instrumental 

delay τ
i
 continuously while tracking 

the source. H
m
(ν) and H

n
(ν) are the 

overall band-pass characteristics of 
the amplifiers and filters in the 
signal path. 

Cross-Correlator: Receiving Systems

Left: Band-pass characteristics of the 
input signal and mixer outputs with 
reference to LO frequency ν

LO
 and input 

center frequency ν
0
.

© Shubhendu Joardar



  

Cross-Correlator: Single Side Band Response
Let φ

m
 be phase change in the signal path from antenna m to correlator input 

resulting from τ
g
 and LO. Let φ

n
 be the corresponding phase change in the 

signal path from antenna n to correlator (including the instrumental delay τ
i
). 

With reference to the (u,v,w) coordinate system, we express the visibility 
V(u,v) in its magnitude and phase form in the u-v plane as:

 where φ
v
 is the phase of the visibility. 

Within a pass-band dν, the infinitesimal correlator response dr will be:

Here, A
e
 is the effective aperture area of any one antenna (same for both) 

looking at the source, and H
m
(ν) and H

n
(ν) are the response of the filter 

amplifier combinations. Note that H
n

*(ν) is the complex conjugate of H
n
(ν).

The correlator response over the entire system pass-band is the integration of dr 
over the entire band-width:

© Shubhendu Joardar



  

Cross-Corr.: USB with single IF conversion
Let the filters allow only USB frequencies (ν

LO
+ν) to pass. Due to geometric 

delay τ
g
, signals from antenna m undergoes a phase shift of 2π(ν

LO
+ν) τ

g
 when 

it reaches the mixer. Let θ
m
 be the negative phase contribution from LO to the 

signal from antenna m in the mixer. Similarly, let θ
n
 be the negative phase 

contribution from LO to the signal from antenna n. The overall phase changes 
φ

m
 and φ

n
 respectively for the paths from m and n antennas to the mixer are:

we obtain the USB correlator output r
usb

 as:

If source is sufficiently close to center of observing field, the above integral 
becomes half of the Fourier transform of the cross power spectrum H

m
(ν) 

H
n

*(ν). Since Δτ is small but non-zero, it introduces a linear phase change 
across the band. © Shubhendu Joardar

and

where, Δτ = τ
g
-τ

i
  is difference between geometric and instrumental delays.

Substituting the above in



  

Cross-Corr.: USB with single IF conversion

For non-zero Δτ,

Let the magnitudes of H
m
(ν) and H

n
(ν) be 

identical and flat across the band-width as: 

© Shubhendu Joardar

Substituting the above equation in the equation of r
usb

 (previous slide) we get:

where, Δν
IF

 is the IF filter band-width.

Defining                  as instrumental gain factor, where φ
G
 is the phase 

difference between the two signal paths produced by the filter-amplifier 
combinations excluding the LO phase contributions (θ

m
 and θ

n
). These will be 

added separately whenever required.



  

Cross-Corr.: USB with single IF conversion
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From last slide, we have the USB correlator output (r
usb

) as:

The 2πν
0
τ

g
 term inside the cosine function produces a quasi-sinusoidal 

variation of r
usb

 with the motion of source. The overall phase depends on: 
    (i) Phase responses of the signal channels.
    (ii) Delay error Δτ. 
    (iii) Phase of the visibility function.
    (iv) Relative phases of the LO signals. 

Note: Since the frequencies at RF and IF differ by ν
LO

, the contribution to ν
f ringe  

comes from ν
LO

 as the source changes its position on the sky. 

Since the geometrical delay τ
g
 appears at the RF, whereas the compensating 

instrumental delay τ
i
 is applied in IF, the output oscillates. The oscillation 

frequency (natural fringe frequency) ν
f ringe 

at the output is:



  

Cross-Corr.: LSB with single IF conversion
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After introducing the instrumental gain G
mn

, we rewrite the above equation as:

In this case, the filters are designed to allow the LSB to pass alone. Hence, 
increasing the phase of the signal at the RF decreases the phase at the IF. 
The signs of the phases φ

m
, φ

n
  and the visibility phase φ

v
 will be opposite of 

the USB case. We accordingly modify the USB phase equations and rewrite 
them as:

The correlator output rlsb for the lower side-band can be expressed as:



  

Cross-Corr.: LSB with multi IF conversions

© Shubhendu Joardar

It may sometimes be advantageous to up or down convert the signals more 
than once. These are done at several stages of the receiving system using 
different mixers and LO combinations. For a once down converted signal, 
the LSB spectrum gets flipped (frequencies at the lower end of RF appear at 
the higher end of IF). If the down conversion is done once again, the 
spectrum flips back in the second IF. Hence, if the number of down 
conversions are odd the final IF has a reversed spectrum. 

The LSB correlator output r
odd(lsb)

 for odd number of IF conversions is:

Here, ν
ΣLO

 represents the sum of LO frequencies, θ
Σm

 and θ
Σn

 are respectively 
the combined phases resulting from the LOs for the paths m and n.

The LSB correlator output r
even(lsb)

 for the even number of IF conversions is:

Here, ν
ΣLO

 represents the sum of LO frequencies, θ
Σm

 and θ
Σn

 are respectively 
the combined phases resulting from the LOs for the paths m and n.



  

Fringe Stopping in SSB Correlators
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First we recall the basis of 
fringe stopping in an 
interferometer which does 
not do IF conversion. The 
antennas are tracking a radio 
source. Propagation delay 
dsinθ keeps changing with 
Earth rotation. Compensate 
the geometrical delay τ

g
 = 

dsinθ/c by equal amount of 
instrumental delay τ

i
 such 

that Δτ = τ
g
 - τ

i
 = 0. 

Hence, signals entering the correlator are in phase. The interferometer will thus 
produce a peak output. This point of observation on the sky is called the fringe 
stopping center. 

For a heterodyne system, we saw that correlator also produces a natural fringe 
freqeuncy component ν

fringe
. To stop these fringe oscillations, a continuous 

phase change is applied to one of the LO. How? See next.



  

Fringe Stopping in SSB Correlators

© Shubhendu Joardar

Fringe oscillations can be eliminated by varying θ
m
- θ

n
  at a rate which 

maintains a constant modulo 2π to the term [2πν
LO

τ
g
+(θ

m
- θ

n
)]. This is achieved 

by either by adding 2π ν
fringe

 to θ
m
 or subtracting it from θ

n
.

We know that the USB and LSB correlator outputs are given as:

Complex correlators are preferred in fringe stopping, since 
they produce real and imaginary parts. The cos output r

real
 

and sin output r
imag

 are respectively real and imaginary. 
Under fringe stop conditions:

Mathematically, two conditions are maintained: (i) Δτ = 0 and (ii) 2πν
LO

τ
i
 + 

(θ
m
- θ

n
) = 0. Hence, correlator outputs r

real
 and r

imag
 respectively represent the 

real and imaginary parts of G
m n

V (u,v).



  

Cross-Correlator Double Side Band Response
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Right figure:
Spectra of the input and side-
bands for ν

0
 = 1.5ν

IF
. The band-

pass filters block everything 
except the two side-band signals. 
Hence the DSB complex 
correlator's cosine (real) response 
r

dsb(cos)
 is the sum of r

usb
 and r

lsb
 

(obtained earlier) is:

The sin (imaginary) output r
dsb(sin)

 can be logically produced from above as:

The last term cos{2πν
LO

τ
g 

+ (θ
m 

- θ
n
) – φ

v
} is independent of Δτ and φ

G
. It 

rapidly modulates the fringe amplitude, which can seen by stopping τ
i
 such 

that Δτ changes.



  

Cross-Correlator Double Side Band Response
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A tentative fringe amplitude variation as a function of Δτ,  where the center 
frequency ν

0
 of the received signal is taken as 1.5Δν

IF
 (see previous diagram) 

and the instrumental delay τ
i
 is kept constant. If the term 2πν

0
Δτ+φ

G
 is 

adjusted to maximize the real output, the imaginary output vanishes and vice 
versa. Hence, in continuum observations where both the side-bands are of 
equal strength, the complex correlator does not give any extra sensitivity.



  

Correlator with DSB with multiple IFs
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Interferometer with two IF stages. 
Next to the antennas DSB receivers 
are used. The second conversion has 
only USB. Two compensating delays 
(τ

i1
 and τ

i2
) are used.

Response of H
m
 or H

n 
 (first IF).

Response of H
m'

 or H
n'  

(second IF).



  

Correlator with DSB with multiple IFs
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The signal phases φ
m
 and φ

n
 at the 

correlator input are:

Note that upper signs in the symbols ± 
and     represent the USB conversions 
at both first and second IF for each 
antenna. The lower signs represent the 
same for the lower side-band. The 
correlator responses are:

_
+

where, Δτ = τ
g 
- τ

i1
 - τ

i2
.

The complete double side-band response is given as:



  

Correlator with DSB with multiple IFs
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where, Δτ = τ
g 
- τ

i1
 - τ

i2
.

The complete double side-band response was:

First cosine term modulates the fringe amplitude. Fringe phase is determined 
by the second cosine term which depends only on phase LO

1
. Hence, the phase 

shift should be applied to LO
1
. The effects of τ

i1
 and τ

i2
 are seen when one is 

held constant and other is varied as explained:

(i) Let τ
i1
 be variable which compensates the delay and let τ

i2
 = 0. Hence in the 

last equation, τ
i1
-τ

g
 must be ideally zero and φ

G
 should be minimized. It follows

that θ
m2

 and θ
n2

 must be equalized to maximize the fringe amplitude. 

(ii) Let τ
i2
 be variable which compensates the delay and let τ

i1
 = 0. This is 

preferred in large arrays with digital delay compensation. With changing τ
g
, a 

continuously varying phase shift is applied in θ
m2

 and θ
n2

. This is to maintain 
the first cosine term near unity. The fringe phase is not affected but its 
amplitude varies.



  

Fringe Stopping in DSB Corrs. with Multi-IFs
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Let τ
i1
 = 0 and let τ

i2
 be changed continuously to 

maintain Δτ
g
 = 0. As the source moves, path 

difference between signals at antenna m and n 
changes resulting in fringe frequency. With 
respect to wave-front at antenna n, the antenna 
m moves away as a function of time. Thus, 
there is a relative Doppler shift occurring in 
antenna m with respect to antenna n. This 
results from changing geometrical delay τ

g
 with 

source position as a function of time. 
Mathematically, RF frequency ν

mRF
 at antenna m 

is related to RF frequency ν
nRF

 of antenna n as:

 where ν
1
 and ν

2
 are the LO frequencies.

For USB signals from antenna m, 
the correlator input frequency is:



  

Fringe Stopping in DSB Corrs. with Multi-IFs
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For the USB signals from antenna m, the correlator input frequency is :

For fringe stopping, ν
nRF

 is suitably decreased such that correlator have 
identical frequency inputs. For this, the two LO frequencies are multiplied by 
(1+dτ

g
/dt). Mathematically, we add 2π(dτ

g
/dt)ν

1
 to θ

n1
 and 2π(dτ

g
/dt)ν

2
 to θ

n2
. 

Simultaneously, the antenna n signal is delayed by τ
i2
. Since the delay τ

i2
 is 

adjusted continuously, the signal frequency gets reduced by a factor (1-dτ
g
/dt) 

which explains (3).

Note: If second order terms of dτ
g
/dt in (3) are neglected, it reduces to (1). If 

signs of both ν
nRF

 and ν
1
 are reversed, (1) and (3) can be applied on LSB, thus 

making both correlator input frequencies identical. The net result is fringes get 
stopped in both side-bands.

For fringe stopping, correlator (USB) input freq. ν
nCRR(in)

 from antenna n is:

… (1)

… (3)

If τ
i1 

= τ
i2
= 0, corr. (USB) input freq. (Ant. n): … (2)



  

Digital Conversion: Base-Band Sampling
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If power spectrum of a signal is restricted within a band of frequencies, the 
signal is said to be band-limited. If this band starts at zero frequency and ends 
at some fixed upper frequency (low-pass), it is known as base-band.

A base-band signal x(t) having a maximum frequency component of Δν (same 
as bandwidth) is sampled by multiplying it with an equally spaced train of 
pulses (delta functions). The separation between the pulses is τ

s
 which is 

known as sampling period. The resulting sampled signal x
s
(t) is given as:

where, n is an integer.

The smallest sampling rate at which the information content of the signal 
remains intact (after sampling) is known as Nyquist rate ν

s 
given as:

The analog signal can be reproduced back from x
s
(t) by passing it through a 

low-pass filter having a cut-off frequency Δν.



  

Digital Conversion: Band-Pass Sampling
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Band-pass spectra can also be sampled at Nyquist rate. Here, the analog 
signals lies within a frequency range starting from nΔν to (n+1)Δν, where n is 
an integer. In other words, the signal spectrum starts at some integral multiple 
of Δν instead of zero frequency. Since the signal band-width is Δν, the Nyquist
rate remains same as 2Δν. 

The necessary condition for band-pass sampling at Nyquist rate is that the 
lower and upper limits of the spectral band must be integral multiples of the 
band-width. 



  

Digital Conversion: Quantization 
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A quantizer is used to convert the 
sampled outputs within a limited 
number of levels called quantization 
levels. It introduces an error known as 
quantization error. This error can be 
reduced by increasing the number of 
quantization levels. The quantized 
samples when represented in binary 
form are called digital samples.

Sampled values takes 
nearest quantization 
level. By increasing 
quantization levels, 
quantized values fall 
more closer to the 
signal. For infinite 
quantization levels, 
matching is exact. 



  

Cross Correlators: Signal to Noise Ratio
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The SNR (signal to noise power ratio) is considered at the final output. 
Power contribution from the source alone is considered as signal. Power 
contribution from rest of the system is considered as noise. These 
contributions depend on:

    (i) Antenna temperature. 

    (ii) System temperature. 

    (iii) Receiver system band-width. 

    (iv) Integration band-width after multiplication.

In the following discussions, we assume the source to be at the center of the 
fringe pattern. We may thus eliminate the effect of delay in our derivations. 
We also assume identical phase responses of the signal channels. The chosen 
correlator response is therefore the peak fringe amplitude, which is the 
modulus of visibility (|V |).



  

Signal Spectra near Correlator
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 T
Ant

 << T
Sys

,  k is Boltzmann constant. Since input spectra |H
m
(ν)|2 and |H

n
(ν)|2 

contain both negative and positive frequencies and are symmetric about the 
origin, the output noise spectrum can be considered proportional either to (i) 
the convolution between |H

m
(ν)|2  and |H

n
(ν)|2, or to (ii) the cross-correlation 

between |H
m
(ν)|2 and |H

n
(ν)|2.

Input spectrum of correlator 
with rectangular pass-band Δν

IF
. 

Antenna temperatures are 
assumed less than the respective 
system temperatures.

Complete spectrum from time-lag product 
(before integration) of two signals including 
noise bands. Only frequencies close to zero 
are able to pass out from the integrator. The 
required signal spectrum appears as a delta 
function at zero frequency (thick arrow).



  

SNR in Analog Correlators
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T
Am

 & T
An

 - Antenna temperatures of  m 
and n respectively. 

T
Sm

 & T
sn

 - System temperatures 
respectively for paths associated with m 
and n antennas. 

H
m
(ν) & H

n
(ν) - Respective responses 

of systems associated with m and n 
antennas.

2Δν
LF

 - Equivalent integration band-
width of correlator. 

R
sn

 - Signal to noise power ratio (SNR).

In general, H
m
(ν) and H

n
(ν) have identical rectangular band-widths Δν

IF
. Unless 

the antenna temperatures are greater than their respective system temperatures, 
detection is not possible.



  

SNR in Analog Correlators
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If H
m
(ν) and H

n
(ν) have identical rectangular 

band-widths Δν
IF

, we obtain:

Let τ
a
 be the data averaging time of correlator. 

Averaging in time domain may be described 
as the convolution of the time signal with a 
rectangular function of unit area having a 
width τ

a
. Hence the equivalent integration 

band-width 2Δν
LF 

(including both positive and 
negative frequencies) is related to τ

a
 as:

From above two equations, 
the SNR (R

sn
) is given as: 



  

SNR in Analog Correlators
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If the antennas are single polarized, then each 
antenna receives only half the total flux-
density S. Then the received power p

r
 for each 

antenna is given as:

where, A
e
 is antenna effective aperture area. 

Let the antennas are identical in nature (T
Am

 
= T

An
 = T

A
). The systems are also considered 

identical (T
Sm

 = T
Sn

 = T
S
). Substituting T

A
 in 

the first equation, R
sn

 is expressed as: 

Thus, larger band-widths (Δν
IF

) and large integration time (τ
a
) improves the 

sensitivity by improving SNR.

Note:  SNR can be improved by increasing the factor



  

SNR in Digital Correlators
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The quantization process in digitizing the signals adds a little more noise to 
the system known as quantization noise. To include the quantization loss, an 
efficiency factor η

Q
 has been introduced. The final expression for SNR (R

sn
) is 

given as: 

Note that in deriving the above expressions, no delay was introduced between 
the two signals reaching the correlator. Also the phase responses of the signal 
channels are assumed identical. Hence the source must be in the center of the 
fringe pattern, and the response is for the peak fringe amplitude.

where, 0 ≤ η
Q 

≤ 1.

In terms of antenna temperature the SNR is given as:



  

RMS noise at Complex Correlator Output
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We substitute R
sn 

= 1 and replace S by 
S

crr
. We may express S

crr
 as: 

Consider a simple digital correlator 
whose SNR is:

We may visualize S
crr

 as the flux-density (in watt/m2/Hz) of an unresolved 
source located at the phase reference point, that gives a peak fringe amplitude 
equal to the noise from the system. Here, T

S
 represents system temperature in 

K, k is Boltzmann constant, Δν
IF

 represents the effective rectangular IF band-
width, τ

a 
is data averaging time, A

e
 is the effective aperture area of each 

antenna, and η
Q 

is the efficiency factor relating quantization loss.

Note: Any unresolved radio source on phase reference center producing a flux 
density less than S

crr 
 is not detectable at the correlator output.



  

RMS noise at Complex Correlator Output
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In a complex digital correlator under fringe stop condition, 
the output cos (real) and sin (imaginary) components form 
Hilbert transform pairs. However, the noise outputs (real 
and imaginary) are uncorrelated.

Let |V | be the modulus of noise-free visibility. It is the square-
root of sum of squares of cos and sin outputs of a complex 
correlator. Let ε

n
 be the noise. 

The correlator output Z
crr

 contain 

both the signal V and noise ε
n
. Using 

a vector diagram, with |V | as 
reference, we visualize the effect of 
noise on the correlator output. 

The phase deviation caused in correlator output Z
crr

 by the noise is φ. The real 
and imaginary components of ε

n
 are represented by ε

x
 and ε

y
 respectively. The 

corresponding rms values are represented by (ε
x
)

rms
 and imaginary (ε

y
)

rms
 

respectively. Each of these is equal to S
crr

 which is the uncertainty in the 
measurement. The noise ε

n
 has an rms amplitude ε

rms
 = √2 S

crr
.



  

RMS noise at Complex Correlator Output
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Both (ε
x
)

rms
 and (ε

y
)

rms
 equals S

crr
 which is the uncertainty in the measurement. 

The rms amplitude of ε
n
 is ε

rms
 = √2 S

crr
. The derivation is given below.

When antennas are pointed to blank sky, the correlator output is due to noise 
alone which is measurable. By pointing antennas at a unresolved source, the 
correlator output Z

crr
 obtained is sum of visibility and noise. Measurement of 

Z
crr

 must be under fringe stop condition so that correlator output is maximum. 

Phase deviation in Z
crr

 due to 
noise: φ
Real and imaginary parts of ε

n
:

    Real: ε
x
 , Imaginary: ε

y  

Their rms values are:
    Real: (ε

x
)

rms
 , Imaginary: (ε

y
)

rms

Important note: Source must be unresolved and both real and imaginary 
outputs of the complex correlator are required for computing Z

crr
.



  

Basics of Gausssian probability distribution
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A random signal x(t) having a Gaussian probability distruibution and its 
sampled version x

s
(t) as a function of time are shown along with their 

respective probability density functions φ(x) and φ
s
(x

s
) taken over a large 

amount of time.

We study the signal and its sampled version over a very large amount of time.
Mean μ : Time average of a signal is known as its mean. The mean tends to 
zero if taken over a large time duration. 

Mean of x(t) is:

Mean of x
s
(n τ

s
) is:



  

Basics of Gausssian probability distribution
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Variance σ2 : The square of standard deviation is called variance. They are 
given as:

Mean square value msv: The mean square values are given as: 

Mean square value of x(t) is:

Mean square value of x
s
(n τ

s
) is:

Variance of x(t) is:

Variance of x
s
(n τ

s
) is:

Note: If mean (μ) is zero, the variance (σ2 ) equals mean square value (msv). 

The square-root of mean square value (msv) is know as the root mean square 
value (rms). 

Standard deviation σ: The Standard Deviation is a measure of how spread out 
numbers are from its mean value. To find standard deviation, one needs to 
calculate the variance σ2 first. 



  

Basics of Gausssian probability distribution
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Probability denisty function (PDF): The probability density function (PDF)  
is a mathematical function which describes the probability of occurrence of any 
or all possible events. 

Note: 
    (i) For continuous random variable, area under the curve is unity since it 
         represents the total probabity of all events. 
   (ii) For discrete random variable, the sum all probabilities (all events) is 
         unity. 
  (iii) The possible values of sampled signals (un-quantized) in our case of
         study are infinite and are assumed to be Gaussian. 

The PDF φ of a 
continuous random 
variable x having a 
Gaussian distribution 
(normal distribution) 
with mean μ and 
variance σ2 is:



  

Cumulative density function (CDF):

The cumulative density function (CDF) Φ describes the probability of a 
continuous random variable falling in the interval (−∞, x

0
), where x

0
 is an event 

of the random variable x. 

Basics of Gausssian probability distribution
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Note: 
  (i) For continuous random variable CDF is called cumulative density 
       function, whereas, for discrete random variable it is called 
      cumulative distribution function. 
  (ii) The possible values of sampled signals (un-quantized) in our case of
         study are infinite and are assumed to be Gaussian. 

For a normal distribution, it 
is computed as an integral 
of the PDF within the limits 
(−∞, x

0
). For a contunuous 

random variable, it is 
evaluated as: 



  

Calculating probabilities using PDF:

To calculate the probability Φv that a continuous random variable takes such 

that its values lies between v
1
 and v

2
 we integrate the PDF by settings the limits 

of integration as v
1
 and v

2
 as:

Basics of Gausssian probability distribution
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Error function erf(x):

The error function erf(x) is twice the 
integral of the Gaussian distribution 
with 0 mean and variance of 1/2.

The error function  is related to the 
cumulative density function Φ as:

The error function, evaluated at x/(σ√2) for positive x values, gives the 
probability that a measurement under the influence of normally distributed 
errors with standard deviation σ, has a distance less than x from the mean 
value.



  

Basics of Gausssian probability distribution
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Product mean of two continuous 
random variables x(t) and y(t) is: 

Note: The product of two random numbers is also a random number. Thus 
over a very large sample space, the product mean tends to zero provided 
the probability distribution is Gaussian with zero mean. 

Product mean of two discrete random 
samples x

s
(n τ

s
) and y

s
(n τ

s
) is: 

Product mean of two random variables: Two random variables are 
multiplied and averaged over a large time duration. A simple example is a 
digital correlator.

Re-expressing variance: For a discrete random variable, the varaince σ2 can 
also be expressed in another form as shown below:

Thus we see



  

Digital Correlator Systems
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Though digital systems have technological limitations in context of high 
speed sampling, they are advantageous to analog systems in many respects. 
They offer better delay control and give highly accurate timing pulses to the 
system. For these reasons, most of the digital systems of today stand on 
cutting edge technology.

The analog signals are sampled at Nyquist rate (or higher) and converted to 
discrete form without any information loss. These discrete values are then 
approximated to a nearest available digital value through a process called 
quantization. The number of quantized states N

qnt
 comes from the number of 

bits N
bits

 used for representing a discrete value. These are related as N
qnt

 = 
2Nbits. Since N

qnt
 is a finite quantity, a distortion occurs in the digitized signal 

known as quantization noise. Hence, the digital correlator output is an 
approximation of the linear correlation functions r(τ) and R(τ).



  

Digital Correlators: Base-Band Sampling
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Sampling at rates higher or lower than the Nyquist rate are respectively 
known as over and under samplings. Majority of radio telescope 
receivers convert its final IF into base-band, which is then sampled at 
slightly higher than the Nyquist rate and converted to digital after 
quantization. 

Recall Wiener-Khinchin relationship:  The autocorrelation function of a 
wide-sense-stationary random process has a spectral decomposition 
given by the power spectrum of that process. Thus for the rectangular 
pass-band, the auto-correlation function R

∞
(τ) as a function of time 

interval τ is:

Notes: 
  (i) The sinc function is Fourier transform of the rectangular pass-band. 
       Recall that Fourier transform of rectangular function is sinc function.
 (ii) The subscript symbol ∞ indicates infinite quantization levels (or state 
       before quantization).



  

Digital Correlators: Band-Pass Sampling
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Notes:
    (i) R

∞
(τ) is zero when the time interval τ becomes an integral multiple of 

        1/(2Δν). 
   (ii) For a rectangular shaped pass-band, the successive samples obtained at 
         Nyquist rate are uncorrelated. 
  (iii) The central frequency of the signal spectrum may be adjusted suitably 
         for conforming it to a band-pass sampling. This will also minimize the 
         sampling rate without any information loss. If the spectrum fails to 
        conform, a slightly greater hypothetical band-width may be selected. The 
        center frequency of this hypothetical band should be adjusted for proper 
        band-pass sampling. The sampling will now be at slightly higher Nyquist 
        rate (defined by the new hypothetical band-width).

Based on the Wiener-Khinchin relation, the auto-correlation R
∞
(τ) for a band-

pass sampling is given as:



  

Corr: Nyquist Sampled without Quantization
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<x
s
(t) y

s
(t)> is the expected or mean value of a large number of samples. This 

is like integrating  x(t) y(t) over a large amount of time. Assuming x(t) and y(t) 
possess equal variance (σ2), we express the numerator of above equation as:

Note: <x(t) y(t)> is the analog correlation between x(t) and y(t). The correlator 
output r

∞
(τ) (of unquantized signals x

s
(t) and y

s
(t)) is effectively <x(t) y(t)>. 

Assumptions: (i) Sampled at Nyquist rates. (ii)  Quantization is not done. (iii) 
Signals are in phase (time delay between them is zero). 

x(t) & y(t) - Band-limited signals.

x
s
(t) & y

s
(t) - Their sampled versions (correlator inputs).

Normalized correlation coefficient

The digital correlator output is:

    x
i
 & y

i
 - The ith samples in x

s
 and y

s
. 

    N
Nq

 - Number of samples averaged.



  

Corr: Nyquist Sampled without Quantization
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Thus, a digital correlator output having infinite quantization levels is 
equivalent to a linear measure of the normalized cross-correlation r

nrm
.

We obtained r
∞
 only for a fixed no. of samples N

Nq
. To represent the analog 

function <x
s
(t) y

s
(t)> more accurately, increase blocks of r

∞
. Since the numbers 

of x
i
 and y

i
 are large, they have Gaussian statistical nature as of x(t) and y(t).

Practically, N
Nq

 ranges within 106 to 1012 which is good approximation. Signal 

detection threshold is found from above by setting R
sn∞

 = 1. This shows r
nrm

 lies 
between 10-12 and 10-6. The SNR of above equation can be expressed in terms 
of band-width as:

resultsThus,

The SNR is

since

for 

Variance of correlator output is:

Also,



  

Corr: Non-Nyquist Sampled, No Quantization

© Shubhendu JoardarHere, the sensitivity is same as achieved at Nyquist rate.

Let the sampling frequency is scaled as β times the Nyquist rate. Number of 
samples N = βN

Nq
. Sampling interval τ

s
=1/(2βΔν). Samples are spaced in time 

by qτ
s
, where q is integer. 

Variance

Autocorrelation 

First consider under sampling (0 < β < 1). This makes R
∞
 = 0. Hence the 

denominator of last equation becomes unity. This causes the sensitivity to drop 
down. Now consider over-sampling, where β > 1. 

Signal to noise ratio (SNR) 

By substituting τ
s 
= 1/(2βΔν) in we get:

This results:



  

Correlation: Sampled with Quantization

We now discuss the correlation results of sampled but finitely quantized 
signals. Our focus will be on three important
points:
    (i) Relationship between measured correlation with the normalized cross-    
           correlation coefficient r

nrm
 .

    (ii) Sensitivity losses.
    (iii) Extent to which the lost sensitivity may be restored by over-sampling. 

© Shubhendu Joardar

Numerical subscripts denoting number of quantized levels have been used. 
For example, r

n2
 represents the normalized cross-correlation coefficient 

obtained using two level quantized signals at the correlator input.

To refresh our memory, a few points on quantized signals are listed below:
     (i) The quantized values may or may not be close to the signal value. 
    (ii) As the  number of quantization levels are increased, the quantized values 
         fall more closer to the signal. 
   (iii) When the number of quantization levels becomes infinity, the quantized 
         signal values exactly matches the signal values at those time instants.



  

Correlation: Two Level Quantization
Let us use a correlator with two input quantization levels represented by +1 
and -1 (one-bit). The two level quantized normalized correlation coefficient r

n2
 

is related to r
nrm

 (unquantized) as: 

© Shubhendu Joardar

This is also known as Van Vleck relationship.

Let     and     represent the quantized states of x
i
 and y

i
, where i is integer which 

representing sample point. Correlator output r
2
 by two level quantized inputs is:

x̂i ŷ i

Mean square 
value of r

2
 is:

The variance is:

Note: q is an integer, and R
2
 is autocorrelation. The points along time where 

the samples reside is given by qτ
s
. The approximation is good if r

n2
 << 1.



  

Correlation: Two Level Quantization
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Substituting N = βN
Nq

, we evaluate the ratio of SNR η
2
 or relative sensitivity,

which is the ratio of SNR of a two level quantized correlator to the SNR of an
unquantized correlator. It is given as:

The SNR R
sn2

 at correlator output is

In terms of R
∞
 (unquantized auto-correlation), R

2
 is given as:

Recall that N
Nq

 is the number of samples at Nyquist rate. The factor β is for 
studying under and over-sampling cases. The expression for R

2
 from first 

equation gets modified as:

Sampling at Nyquist rates or less: This corresponds to β = 1, ½, ⅓,... 

Sampling above Nyquist rates: This results in higher values of η
2
. Dependency 

on the band-pass shape comes in when β ≥ 2.

We obtain: η
2
 ≈ 0.64.Here,



  

Correlation: Four Level Quantization
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Recall that σ2 is the variance of the correlator output with unquantized inputs.

Consider a two bit system which gives 22 = 4 quantization levels. Let -n, -1, 
+1, +n represent the quantization states from lowest to highest. Inside the 
correlator, the product of two samples can take the values +1, -1, +n, -n, +n2 
and -n2. In this case, the four level quantized normalized correlation 
coefficient r

n4
 as a function of r

nrm
 is given as:

Here, r
4
 is the four level quantized correlator output, and

Let     and     represent the quantized states of x
i
 and y

i
, where i is integer which 

representing sample point. Correlator output r
4
 is:

x̂i ŷ i

Here, N is the number of samples.

      is the probability that the unquantized level is restricted within ±v
0
 and is 

given as:



  

Correlation: Four Level Quantization
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Assuming r
nrm

 << 1, the 

SNR R
sn4

 is:

The variance is:

The variance as a function 
of auto-correlation R

4
 is:

Ratio of SNRs η
4
 or relative 

sensitivity ( R
sn4

/R
sn∞

 ) is:

Here, β controls the Nyquist rate.
Recall that the minimum and maximum values of quantization states in our four 
level quantized correlator are respectively -n and +n. Changing the level n 
causes the optimized sensitivity to change. For example, when n = 3, the 
optimized sensitivity occurs with v

0
 = 0.996σ and when n = 4 it occurs with v

0
 = 

0.942σ.

Mean square 
value of r

4
 is:



  

Relative sensitivities (η
4
) of a four level quantized correlator for different values 

of n. (a) Two bit system with n = 2. (b) Two bit system with n = 3. (c) Two bit 
system with n = 4. (d) Two bit system with n = 3, but low-level products 
deleted.

Correlation: Four Level Quantization
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Correlation: Other Level Quantizations
Till now, we have seen the quantization levels as even numbers. Sometimes 
odd number of quantization levels are preferred for certain advantages. We 
now describe a three level quantization where one of the quantization levels is 
zero. The variance σ

3
2 of the correlator output r

3
 is

Here R
3
 and r

n3
 respectively represent the auto-correlation and the normalized 

quantized correlation coefficient. Neglecting r
n3

2, the relative sensitivity η
3
 in 

terms of SNR or a three bit quantized correlator R
sn3

 to the SNR of a non-

quantized correlator R
sn∞

 is expressed as:

Note: Sensitivity does not improve very much for quantization levels greater 
than four. © Shubhendu Joardar

Here Ф is obtained as: 



  

Correlator: Principle of Digital Time Delay
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We know that geometrical delay τ
g
 in a correlator system is compensated by 

generating an instrumental delay τ
i
. In digital systems the delay is applied in 

discrete time steps, usually in integer multiples of sampling period, i.e.  k τ
s
, 

where k is an integer and τ
s
 is the sampling period. The integer k controls the 

delay period.

Shift registers may be used for generating delay. In a shift register, the first cell 
is assigned 1 and the remaining cells are assigned 0. A time period of τ

clk
 is 

required for moving a cell's data to its adjascent cell. For convinience, τ
clk

 is kept 
same as sampling period τ

s
. Currently, digital ICs are available which are 

software controlled and generates customized delays.

Shift register: Each clock pulse shifts 
any cell's data bit to the adjascent right 
cell. Data can be entered and taken out 
in following modes: 
     (i) Serial-in to Parallel-out. 
     (ii) Serial-in to Serial-out.
    (iii) Parallel-in to Serial-out.
    (iv) Parallel-in to Parallel-out.



  

Principle of Digital Quadrature Phase Shift

The sin component in a complex correlator 
is obtained by applying a 90° phase shift in 
one of the signals before multiplying them.

Analog correlator - Hilbert transform of 
cos signals gives sin signals. 

Digital correlator - Hilbert transform using 
digital circuits gives a limited accuracy 
because of limited number of samples. SNR 
reduces by a few percent.

Reasons: Summation process in digital convolution increases the number of 
bits in the data. To reduce complexity, lower order bits are discarded  resulting 
further quantization loss. Effectively, sin output suffers from spectral 
distortion and reduced SNR as compared to cos. While designing broad-band 
systems, these are more serious considerations where the high data rate leaves 
a scope only for simple processing.
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XF Correlator

© Shubhendu Joardar

XF is a correlator symbol which indicates that the correlation (X) is done in 
time domain followed by Fourier transformation (F) to frequency domain. 
This is also known as lag correlator.

A XF (lag correlator) using two antennas. Delay is applied in integral multiples 
of sampling period τ

s
. FFT is applied on correlator output. The left, middle and 

right set of outputs are respectively correlation measures between (i)   and 
delayed   , (ii)    and   , and (iii)     and delayed    .x̂

ŷ
ŷŷ x̂ x̂



  

A FX correlator using two antennas. Digitized signals are fed into the shift 
registers, whose output undergoes FFT at intervals of 2N sample periods. 
Correlations are made between one signal with the complex conjugate of the 
other. For an array of n

a 
antennas, each of the FFT outputs are split (n

a
-1) ways 

for combining with complex amplitudes from the other antennas.

FX Correlator
FX is a correlator 
symbol which indicates 
Fourier transform (F) is 
performed first and then 
correlation (X) is 
followed. Input bit 
streams from antennas 
are converted to 
frequency spectra by a 
real time FFT. Each of 
the frequency channels 
are then multiplied and 
integrated in complex 
form.
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Very Long Baseline Interferometry (VLBI)...

© Shubhendu Joardar

VLBI came from the requirements of higher resolution astronomical images at 
radio. Interferometer's angular resolution at wavelength λ is λ/(2dcosθ), where 
d is baseline distance. Highest resolution possible on Earth is by setting d 
equal to Earth's diameter (antennas on opposite sides of Earth). 

Data from radio arrays all over the world are calibrated in time and phase and 
combined. Due to phase-instability in fiber links beyond 200 km,  a single 
array data set is difficult to obtain. Thus extreme phase-stable LO signals 
(using atomic clocks) are used. Individual data sets marked with precise 
timing are recorded independently. These are collectively matched and 
processed (mutual correlations are generated from data). The process involves 
correction of differential Doppler shifts due to Earth rotation and clock rate 
offsets. 

Recently it has become possible to connect the VLBI radio telescopes in real-
time employing the local time references using a technique known as e-VLBI. 
In Europe, six radio telescopes of the European VLBI Network (EVN) are 
connected with Gigabit per second links via their National Research 
Networks and the Pan-European Research Network GEANT2, and the first 
experiments using this technique was successfully conducted.



  

Assignment Problems-I
1. Two parabolic dish antennas of 2 m diameter are separated by 20 m. They 
form an interferometer. If the operating frequency is 150 MHz, calculate the 
angular resolution. 
Hint: 

2. An interferometer forms a fringe pattern on the screen due to light from a 
distant star. The maximum intensity measured is found to be twice the 
minimum intensity. Calculate the magnitude of visibility. 
Hint: 

3. An optical interferometer uses a wave band-width of 1 nm. Find the 
coherence length at a wavelength of 500 nm. Compare this with a radio 
interferometer working at 610 MHz having a band-width of 32 MHz. 
Hint:

4. Explain the additive radio interferometer and its fringe pattern using 
suitable diagrams. 
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Assignment Problems-II
5. Using diagrams explain a two element multiplicative radio interferometer 
and its fringe pattern.

6. What is meant by fringe stopping center of a radio interferometer?

7. What can be the maximum integration time of the correlator? Can it be 
increased infinitely for a moving source?

8. Give diagrammatic representations of (i) a simple correlator and (ii) 
complex correlator. Explain these using equations. 

9. Give the number of cross-correlator outputs obtained from an array of 30 
antennas.

10. For a correlator array of 30 antennas, what would be the percentage loss 
in power if the self terms are eliminated?
Hint:
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Assignment Problems-III
11. Super heterodyne receiving systems are used in a multiplicative 
interferometer and delay correction is done in IF. Explain the term natural 
fringe frequency giving an expression. 
Hint: 

12. If the number of IF stages is n and if only the LSB are chosen, for what 
values of n does the spectrum flip?

13. If r
usb

 and r
lsb

 are respectively the upper and lower side-band correlator 
responses of a single IF conversion receiver, what is the correlator response if 
both side-bands are used? Is there any gain in sensitivity?

14. For above problem, draw tentative correlator responses as a functions of 
non-zero Δτ, where Δτ = τ

g
 - τ

i
 (difference between geometrical and 

instrumental).

15. Tentatively draw the complete noise spectra that will be available within 
a period equal to a single integration period of the correlator if integration is 
not performed and explain it in details.
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Assignment Problems-IV
16. An analog interferometer consisting of two antennas A and B are used to 
observe a radio source. If the system temperatures using A and B are 
respectively 35 K and 40 K respectively and their respective antenna 
temperatures are 45 K and 43 K, find the SNR. Assume the integration 
bandwidth as 1/(10s-1) and IF system band-width as 32 MHz. 
Hint: 

17. An interferometer shows a system temperature of 40 K and antenna 
temperature of 50 K. If the IF band-width is 32 MHz and integration time of 
16 sec, find the SNR for a (i) analog system, and for a (ii) digital system with 
quantization efficiency 70%.
Hint: 

18. Calculate the minimum detectable flux density produced by an 
unresolved source located at the phase reference center of an interferometer, 
given: diameter of the dishes as 45 m, aperture efficiency as 40%, system 
temperature as 50 K, integration time as 16 seconds, IF band-width as 32 
MHz and quantization efficiency as 70%. © Shubhendu Joardar



  

Assignment Problems-V

19. Explain the sampling theorem for discritizing analog signals without loss
of information.

20. Explain the band-pass sampling technique. 

21. If x
s
 and y

s
 are the instantaneous signals from the two antennas of an 

interferometer, derive expression for the normalized cross-correlation 
coefficient using variance when mean is zero. Justify your derivation.
Hint: Begin with the following equation:

22. Explain the basic principle behind generating digital time delay. What is 
the minimum delay period that can be produced? Give a scheme for delay 
generation.
Hint: Shift registers.
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Hint: Calculate the effective aperture area, then use the following equation.



  

Assignment Problems-VI
23. Explain the basic technique used for generation of digital quadrature 
phase shifted output from a digital correlator. 

24. Using a diagram explain the XF (lag) correlator. 

25. Using a diagram explain the FX correlator.

26. Write short notes on VLBI.
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THANK YOU


