

National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune University Campus, Pune -INDIA.

Technical Report on

Design of Clock and Trigger Signal Distribution Unit for GWB System.

Authors:

Navnath Shinde, Ajay Vishwakarma 13 May 2016 _ V1.0

Giant Metrewave Radio Telescope

Khodad- 410504.

Author : Navnath / Ajay	Date of issue:	Scope
Verified by :		
Approved by: Ajit Kumar B.	Status/ Version: Ver.1	Internal Technical Report No.:

Clock and Trigger Signal Distribution Unit.

ACKNOWLEDGEMENT

We are thankful to Prof. Yashwant Gupta (Dean of GMRT) and Prof. S K Ghosh (Center Director of NCRA-TIFR) for giving constant support during this work.

We would also like to express our gratitude towards our group coordinator Shri Ajit Kumar, for his constant guidance and encouragement. We would like to say sincere thanks all our analog and digital lab group member, for time to time sharing and discussing their views for improvement of this developed instrument.

ABSTRACT

The backend receiver system of the Giant Metrewave Radio Telescope (GMRT) is being upgraded and the modifications being implemented in the analog and digital sections of these receivers cater to the improved specifications of the upgraded GMRT (uGMRT).

The main specifications related to the analog section are the ability to process 30 dual polarized RF signals at the central station for a frequency range from 130 to 1600 MHz with seamless frequency coverage, and an instantaneous maximum bandwidth of 400 MHz.

The Digital backend system consists of ROACH board and GPU processors and can easily handle the bandwidth of 400 MHz baseband signal with support up to 16K digital channels.

A very precise and stable Clock & Trigger signal is required for seamless data digitalization purpose. A GPS disciplined Rubidium clock is used to generate reference clock and trigger signal. With an aim of distribution of this reference generated signal, this unit of a system is being developed.

This report describes the design details; implementation scheme and set-up for testing of the Clock and Trigger signal Distribution Unit. It also includes the test results and snapshots of the unit along with datasheets used for the unit.

Sr. No.		Contents	Page No.
1		Introduction	6
2		Design requirement	6
3		Block Diagram	6
4		Circuit Design	7
	4.1	Trigger Signal Distribution	7
	4.2	Clock Signal Distribution	7
5		Specification of IC`s used in Distribution Unit	8
	5.1	IDT 8308A	8
	5.2	8 Way RF Divider(P8-08-454/2S)	8
	5.3	SMPS (NES-25-5)	8
6		Schematic and PCB Layout	9
7		Test and Measurements	10
	7.1	Trigger Signal Distribution	10
	7.2	Clock Signal Distribution	12
8		Bill of Materials	15
9		Snapshots	16
10		Datasheets	17
	10.1	IDT 0200A	17
	10.1	101 0300A	17
	10.2	8 Way RF Divider(P8-08-454/2S)	21
	10.3	SMPS (NES-25-5)	22

Fig. No.	Name of Figure	Page No.
Figure 1:	Block Diagram of Clock and Trigger Signal Distribution Unit.	6
Figure 2:	Schematic Diagram of Clock and Trigger Signal Distribution unit.	7
Figure 3:	PCB of Trigger Signal Distribution Unit.	9
Figure 4:	PCB layout Diagram of Trigger Signal Distribution Unit.	9
Figure 5:	Plots of Trigger Signal output (1PPS 50% duty cycle) Distribution Unit.	10
Figure 6:	Rise time of Trigger (1PPS) Input and Output Signal.	10
Figure 7:	Fall time of Trigger (1PPS) Input and Output Signal.	11
Figure 8:	Delay between Input and Output of Trigger (1PPS) Signal.	11
Figure 9:	Plot of 800MHz Clock Signal Distribution Unit.	12
Figure 10:	Plot showing Harmonics of Clock (800MHz) Input Signal.	13
Figure 11:	Plot showing Harmonics of Clock (800MHz) Output Signal.	13
Figure 12:	Snapshots of 8 Way RF Divider Pulsar microwave (P8-08-454/2S).	14
Figure 13:	Transmission loss of 8 Way RF Divider (Pulsar Microwave_P8-08-454/2S).	14
Figure 14:	Reflection loss of 8 Way RF Divider (Pulsar Microwave_P8-08-454/2S).	14
Figure 15:	Bill of Materials for Clock and Trigger Signal Distribution Unit.	15
Figure 16:	Snapshots of Clock and Trigger Signal Distribution Unit.	16

-

1. Introduction:

The clock and trigger signal are required to the hardware (ROACH Boards) of the upgrade wideband digital back-end (GWB) system to maintain the synchronization in the signal digitalization process. The prerequisite of this signal is that both are generated using the T&F standard of the GMRT. The design helps to make the multiple copies of the reference signal as an input to the GWB digitalizing units.

2. Design Requirement:

- 1. To provide 8 copies of the Trigger signal either PPS or PPM.
- 2. To provide 8 copies of the Clock signal having range from 10 MHz to 1500MHz.

3. Block Diagram:

Figure 1: Block Diagram of Clock and Trigger Signal Distribution Unit.

4. Circuit Design:

4.1 Trigger Signal Distribution:

A Trigger signal (PPM/PPS) is received from the Time and frequency standard of the GMRT and this signals are received in the Correlator room. For 1PPS distribution, IDT8308 LVCMOS fan-out buffer IC is used which provide 5V TTL output. This unit operates at + 5V DC from SMPS output. The IDT make ICS8308I has been selected and a circuit designed as shown in the circuit diagram.

Figure 2: Schematic Diagram of Clock and Trigger Signal Distribution Unit.

4.2 Clock Signal Distribution:

For Clock distribution 8-way Pulsar make divider P8-08-454/2S is used which provides 800MHz Clock output with -14 dBm power level.

A dedicated Meanwell make SMPS is used in this unit. This PIU is integrated in 1U size enclosure which serves as a distribution circuit for both Clock and 1PPS sync Output. The unit operates at 230VAC Input with down converting the power supply to +5V DC through SMPS Unit. This unit is also having features with ON/OFF switch to Mains 230VAC power supply along with Fuse of 2A rating.

5. The specifications of the IC's used in the Distribution unit are as follows:

5.1 IDT 8308A:

- 1. Low skew,1-to -8 Fan-out buffer
- 2. Two selectable inputs, (1. CLK and 2. Differential input levels)
- 3. Outputs are designed to drive 50 ohm series or parallel terminated transmission lines.
- 4. Eight LVCMOS/LVTTL outputs, (7Ωtypical output impedance
- 5. Selectable LVCMOS_CLK or differential CLK, nCLK inputs
- 6. CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL.
- 7. Guaranteed output and part-part skew characteristics make the 8308I ideal for those clock distribution applications.

5.2 8 Way RF Divider(P8-08-454/2S):

- 1. Pulsar Microwave Make.
- 2. Frequency Range: 5 2000MHz.
- 3. Insertion Loss: 4.5 dB Max.
- 4. Isolation: 16 dB Min.
- 5. Power: 1 Watt Max.

5.3 SMPS (NES-25-5):

- 1. Meanwell Make.
- 2. DC Voltage:5V
- 3. Rated Current:5A
- 4. Rated Power:25W
- 5. Protections: Short circuits/Overload/Over voltage.
- 6. Single Output switching Power Supply.

6. Schematic and PCB layout:

Altium Designer software is used for making a schematic and PCB layout diagram of Trigger (1PPS/PPM) Signal Distribution circuit. It has one input and 8 multiples output used for Trigger (1PPS or 1PPM) signal distribution. The outputs are matched with 50 ohm series impedance for transmission lines. It requires +5V DC supply for its operations. The size of this PCB is 130x50mm having track width of 1mm with thickness 1.5mm.

Figure 3: PCB of Trigger Signal Distribution Unit.

Figure 4: PCB layout Diagram of Trigger Signal Distribution Unit.

7. Test and Measurements:

7.1 Trigger Signal Distribution:

For testing a trigger Signal distribution, A TM4-M/D unit is used which provides a 1PPS (50% duty cycle) output on Port E. This 1PPS input is connected to trigger distribution circuit and 8 multiple copies of 1PPS signal are taken as output.

> Following are the plots of Trigger Signal (1PPS output) shown below:

Figure 5: Plots of Trigger Signal output (1PPS 50% duty cycle) Distribution Unit.

(i) Rise Time_5.2 ns 1PPS Input Signal.

(ii) Rise Time_4.9 ns 1PPS Output Signal.

Figure 6: Rise time of Trigger (1PPS) Input and Output Signal.

File Vertical Timebase Trigger Display Cursors	Measure Math Analysis Utilities Help	Zoom 🖓	File Vertical Tir	nebase Trigger Displ:	ay Cursors	Measure Mat	th Analysis I	Utilities Help		Zoom 🔽
					1					
			C2		1					
C1 0000 1.00 Vidw	Timebase -16.4 nS Tri 10.0 ns/dW N	igger (2000) ormal 1.46 V	C2 DOMM			Į			Timebase -16.4	ns Trigger (1200)
-1.000 V ofst	1.00 kS 10 GS/s Ed	dge Negative	-2.000 V ofst						1.00 kS 10 GS	div Normal 1.46 V S/s Edge Negative
-1.000 V ofst 3.268 V 504 mV Utities Status Remote Hardboopy Aux Output	1.00 k8 10.095/9 Er X1= -7.1 ns ∆X= X2= -2.1 ns 1/∆X= 2/ Dete/Time Coptons	dge Negative 5.0 ns 00 MHz Close	-2.000 V ofs: 1 4 475 V 1 427 mV Utilities Status	Remote Hardcopy	Aux Output	Date/Time O	ptions		1.00 kS 10 GS X1= -1.7 ns A X2= 2.9 ns 1/A	dvyNormal 1.46∨ NSEdge Negative X= 4.6 ns X= 217 MHz Close
Concord Votes Schwitz Schwitz Children Schwitz Children Schwitz Schwi	1 00% 10 05% 10 05% XI= -7.1 ns 20% X2= -2.1 ns 10% 2 Date/Time Cotors File Name File Name File Name FALL TIME INVE 5 ns pg Directory File Name File Name File Name	sige Negative 5.0 ns 00 MHz Close	-2.000 V ofst 4.475 V 427 mV Utiltes Status Printer Clipboard	Remote Hardcopy File Forma JPEO - JFIF Complian	Aux Output at nt (jpg)	Date/Time O	ptions File Nar ME OUTPUT 4. Directory	me Gns.jpg	100 ns 100 ns X1= -1.7 ns X2= 2.9 ns 1/2	dw Normal 1.46 v Sedge Negative X≈ 4.6 ns X≈ 217 MHz Close
Colors File EVal Eval	1 004:8 10 0050 E XI= -7.1 ns 246 XI= -7.1 ns 246 XI= -2.1 ns 10X4 2 Dife/Time Cyclons File Name FALL TME INFU/ 5 ns jpp Directory E1 Hardcopy Area DR0 Window	dge Negative 5.0 ns 00 MHz Close	2000 Vorst 4 415 V 421 rov Utites Status Printer Clipboard File E-Mail	Renote Hardcopy File Forms JPEO - JFIF Complian Colors Print Print Print to save	Aux Output at nt (jpg)	Date/Time O FALL TI E1	rptions File Nar ME OUTPUT 4.1 Directory	me Bins jpg Brow Hardcopy Area S0 Window	1.00 kS 10 GS X1= -1.7 ns & X2= 2.9 ns 1/2	din Normal 1.46 V SE Edge Wegative X≈ 4.6 ns X≈ 217 MHz Close

(i) Fall Time_5.0 ns 1PPS Input Signal (ii) Fall Time_4.6 ns 1PPS Output Signal

Figure 7: Fall time of Trigger (1PPS) Input and Output Signal.

(ii) Rise Time Delay_5.8 ns Input Signal

(ii) Fall Time Delay_5.2 ns Output Signal

Figure 8: Delay between Input and Output of Trigger (1PPS) Signal.CH1_Yellow colour indicates 1PPS Input SignalCH2_Pink colour indicates 1PPS Output Signal.

Summary Table: \geq

Sr. No.	Description	1PPS Input Signal	1PPS Output Signal
1	Rise Time	5.2 ns	4.9 ns
2	Fall Time	5.0 ns	4.6 ns
3	Rise Time Delay	5.	8 ns
4	Fall Time Delay	5.	2 ns

7.2 Clock Signal Distribution:

For testing a Clock Signal distribution, a signal Generator SMA100 is used for providing CW Signal of 800MHz Clock as Input to 8-Way RF Divider (Pulsar Microwave_P8-08-454/2S) which gives 8 multiple copies of Clock Signal with -14 dBm power level.

Loss calculated in 8 Way RF Divider (dB) =10*log 8 (8=for 8 Way RF Divider)

=10*0.9030 =9dB + (4.5dB) Insertion loss =13.5dB

Figure 9: Plot of 800MHz Clock Signal Distribution Unit.

Spect	rum								
Ref Le Att	vel 1	0.00 dBr 30 di	n B 👄 SWT 1 s	● RBW	300 kHz 1 kHz Mode	auto FFT			
●1AP C	Irw								
			M1			M1[1]		-0.07 dBn 800.00 MH:
U UBIII-						M2[1	1		-46.10 dBn
-10 dBn	n								1.60000 GH
-20 dBn	n					2			
-30 dBn	n								
-40 dBn	n			7	Ma	2			
-50 dBn	n			1		-		M3	
-60 dBn	7	mennen							en marine and
-70 dBm	n							ſ	
-80 dBn	n								
Start 1	0.00	MHz		2	691 pt	5	3		Stop 3.0 GHz
Marker					-				
Type	Ref	Trc	X-value		Y-value	Functior		Function	Result
M2		1	1	.6 GHz	-46.10 dBm				
M3		1	2	.4 GHz	-52.10 dBm				
)[]				Measuri	ng 🚺		08.06.2016 12:15:26

Date: 8.JUN.2016 12:15:26

Date: 1.JUN.2016 10:21:52

> 8 Way RF Divider(P8-08-454/2S):

Figure 12: Snapshots of 8 Way RF Divider Pulsar microwave (P8-08-454/2S).

Following are the Transmission and Reflection loss of 8 Way RF Divider (Pulsar Microwave P8-08-454/2S).

Figure 13: Transmission loss of 8 Way RF Divider (Pulsar Microwave_P8-08-454/2S).

Figure 14: Reflection loss of 8 Way RF Divider (Pulsar Microwave_P8-08-454/2S).

Clock and Trigger Signal Distribution Unit.

8. Bill of Materials:

	Bill of Materials for Clock Signal Distribution PCB							
SR								
No.	Description	Type / Make	Designator	Value	Quantity			
1	Capacitor	SMD	C1, C2	0.1uF	2			
		SMD	C3	10pF	1			
				50E,				
2	Resistor	SMD	R1,R2,R3,R4,R5,R6,R7,R8	1/4W	8			
				100E,				
		SMD	R9	1/4W	1			
3	Jumper	Plastic	J4	Link	1			

	Bill of Materials for Clock & Trigger Signal Distribution Unit						
SR							
No.	Description	Make	Туре	Quantity			
1	SMA Connector	Huber-Suhner	Straight Panel Cable Jack-Female	10			
2	SMA Connector	Huber-Suhner	Straight Panel Cable Jack-Male	2			
3	SMA Connector	Huber-Suhner	Straight Bulkhead Cable Jack-Female	1			
4	DC Connector		DC power Connector - 3Pin	1			
5	Clock PCB	FR4 Board	Designed PCB	1			
		Pulsar					
6	8 Way RF Divider	Microwave	Inductive module	1			
7	1U Unit (19" Size)	Home made	Aluminium Box	1			
8	230V AC Switch		Plastic	1			

Figure 15: Bill of Materials for Clock and Trigger Signal Distribution Unit.

9. Snapshots:

Figure 16: Snapshots of Clock and Trigger Signal Distribution Unit.

Front view

Rear view

Set-up for testing Trigger Signal Distribution Unit

Clock and Trigger Signal Distribution Unit.

10. Datasheets:

10.1 IDT 8308A:

Low Skew, 1-to-8 Differential/LVCMOS-to-LVCMOS Fanout Buffer

ICS8308I

DATA SHEET

GENERAL DESCRIPTION

The ICS8308I is a low-skew, 1-to-8 Fanout Buffer. The ICS8308I has two selectable clock inputs. The CLK, nCLK pair can accept

most differential input levels. The LVCMOS_CLK can accept LVCMOS or LVTTL input levels. The low impedance LVCMOS/

LVTTL outputs are designed to drive 50 series or parallel

terminated transmission lines. The effective fanout can be

increased from 8 to 16 by utilizing the ability of the outputs to

The ICS8308I is characterized for 3.3V core/3.3V output, 3.3V core/2.5V output or 2.5V core/2.5V output operation.

Guaranteed output and part-part skew characteristics make

the 8308I ideal for those clock distribution applications requiring

drive two series terminated transmission lines.

well defined performance and repeatability.

FEATURES

- Eight LVCMOS/LVTTL outputs, (7Ω typical output impedance)
- · Selectable LVCMOS_CLK or differential CLK, nCLK inputs
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- · Maximum Output Frequency: 350MHz
- Output Skew: (3.3V± 5%): 100ps (maximum)
- Part to Part Skew: (3.3V± 5%): 1ns (maximum)
- Supply Voltage Modes: (Core/Output)
 3.3V/3.3V
 3.3V/2.5V
 2.5V/2.5V
- · -40°C to 85°C ambient operating temperature

PIN ASSIGNMENT

 Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

BLOCK DIAGRAM

CLK_EN Pullup 24 V000 00 E D 23 Q2 22 GND GND 2 CLK_SEL 3 LVCMOS_CLK 4 LE 21 Q3 LVCMOS_CLK Pullup 00 CLK C 20 Vico CLK Pullup nCLK TE 19 Q4 18 GND nCLK Pulktown CLK_EN 07 01 OE D 17 Q5 Voo D 16 Vooo 15 Q6 CLK_SEL Pullup 02 GND 10 14 GND 13 Q7 Q1 🗆 11 03 V000 [12 04 ICS8308I Q5 24-Lead, 173-MIL TSSOP 4.4mm x 7.8mm x 0.925mm body package Q6 G Package Top View 07 OE Pullup

ICS8308AGI REVISION C APRIL 4, 2013

1

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	ype	Description
1, 11, 13, 15, 17, 19, 21, 23	Q0, Q1, Q7, Q6, Q5, Q4,Q3, Q2	Output		Clock outputs. LVCMOS / LVTTL interface levels.
2, 10, 14, 18, 22	GND	Power		Power supply ground.
3	CLK_SEL	Input	Pullup	Clock select input. Selects LVCMOS clock input when HIGH. Selects CLK, nCLK inputs when LOW. See Table 3A. LVCMOS / LVTTL interface levels.
4	LVCMOS_CLK	Input	Pullup	Clock input. LVCMOS / LVTTL interface levels.
5	CLK	Input	Pullup	Non-inverting differential clock input.
6	nCLK	Input	Pulldown	Inverting differential clock input.
7	CLK_EN	Input	Pullup	Clock enable. LVCMOS / LVTTL interface levels.
8	OE	Input	Pullup	Output enable. LVCMOS / LVTTL interface levels. See Table 3B.
9	Vpp	Power		Power supply pin.
12, 16, 20, 24	V _{DDD}	Power		Output supply pins.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _N	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance (per output)			12		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
Rout	Output Impedance		5	7	12	Ω

TABLE 3B. OE SELECT FUNCTION TABLE

Output Operation

Outputs Q0:Q7 are in Hi-Z (disabled) Outputs Q0:Q7 are active (enabled)

Control Input

0E 0

1

TABLE 3A. CLOCK SELECT FUNCTION TABLE

Control Input	Clock Input			
CLK_SEL	Clock Input			
0	CLK, nCLK is selected			
1	LVCMOS_CLK is selected			

TABLE 3C. CLOCK INPUT FUNCTION TABLE

Inputs					Input to Output Made	Balarity	
CLK_SEL	LVCMOS_CLK	CLK	nCLK	Q0:Q7	input to Output Mode	Polarity	
0	_	0	1	LOW	Differential to Single Ended	Non Inverting	
0	-	1	0	HIGH	Differential to Single Ended	Non Inverting	
0	_	0	Biased; NOTE 1	LOW	Single Ended to Single Ended	Non Inverting	
0	_	1	Biased; NOTE 1	HIGH	Single Ended to Single Ended	Non Inverting	
0	-	Biased; NOTE 1	0	HIGH	Single Ended to Single Ended	Inverting	
0	_	Biased; NOTE 1	1	LOW	Single Ended to Single Ended	Inverting	
1	0	_	_	LOW	Single Ended to Single Ended	Non Inverting	
1	1	_	_	HIGH	Single Ended to Single Ended	Non Inverting	

NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".

ICS8308AGI REVISION C APRIL 4, 2013

2

SCHEMATIC EXAMPLE

Figure 3 shows a schematic example of the ICS8308I. In this example, the LVCMOS_CLK input is selected. The decoupling capacitors should be physically located near the power pin.

All unused LVCMOS outputs can be left floating. There should be

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

OUTPUTS:

LVCMOS OUTPUTS

no trace attached.

LVCMOS_CLK INPUT

For applications not requiring the use of an LVCMOS_CLK, it can be left floating. Though not required, but for additional protection, a 1k Ω resistor can be tied from the LVCMOS_CLK input to ground.

CLK/nCLK INPUTS

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

LVCMOS CONTROL PINS

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Power On Sequence

There is no power on sequence requirement for the V_{sc} and V_{sco}. If the V_{sco} is turned on before the V_{sc} there will be unknown state at the outputs during initial condition when the V_{sco} is on and V_{sc} is off.

12

RELIABILITY INFORMATION

TABLE 6. θ_{μ} vs. Air Flow Table for 24 Lead TSSOP

θ , by Velocity (Linear Feet per Minute)									
Multi-Layer PCB, JEDEC Standard Test Boards	0 70°C/W	200 63*C/W	500 60*C/W						

TRANSISTOR COUNT

The transistor count for ICS8308I is: 1040

PACKAGE OUTLINE AND DIMENSIONS

PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP

TABLE 7. PACKAGE DIMENSIONS

		Millimeters			
	SYMBOL	Minimum	Maximum		
	N	24			
	Α	-	1.20		
	A1	0.05	0.15		
	A2	0.80	1.05		
	b	0.19	0.30		
	c	0.09	0.20		
Г	D	7.70	7.90		
	E	6.40 BASIC			
Г	E1	4.30	4.50		
	e	0.65 BASIC			
	L	0.45	0.75		
	α	0°	8°		
	888	-	0.10		

REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MO-153

ICS8308AGI REVISION C APRIL 4, 2013

13

10.2 8 Way RF Divider (Pulsar Microwave _P8-08-454/2S):

10.3 Switch Mode Power Supply (SMPS NES-25-5) :

25W Single Output Switching Power Supply

Features :

- Universal AC input / Full range
- Protections: Short circuit / Overload / Over voltage
- Cooling by free air convection
- 100% full load burn-in test
- 2 years warranty

MODEL		NES-25-5	NES-25-12	NES-25-15	NES-25-24	NES-25-48			
OUTPUT	DC VOLTAGE	5V	12V	15V	24V	48V			
	RATED CURRENT	5A	2.1A	1.7A	1.1A	0.57A			
	CURRENT RANGE	0~5A	0~2.1A	0~1.7A	0~1.1A	0~0.57A			
	RATED POWER	25W	25.2W	25.5W	26.4W	27.36W			
	RIPPLE & NOISE (max.) Note.2	80mVp-p	120mVp-p	150mVp-p	200mVp-p	240mVp-p			
	VOLTAGE ADJ. RANGE	4.75~5.5V	10.8 ~ 13.2V	13.5 ~ 16.5V	21.6~26.4V	43.2 ~ 52.8V			
	VOLTAGE TOLERANCE Note.3	±2.0%	±1.0%	±1.0%	±1.0%	±1.0%			
	LINE REGULATION Note.4	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%			
	LOAD REGULATION Note.5	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%			
	SETUP, RISE TIME	500ms, 30ms/230VAC	1200ms, 30ms/1	15VAC at full load					
	HOLD UP TIME (Typ.)	50ms/230VAC 10ms/115VAC at full load							
	VOLTAGE RANGE	85~264VAC 120~370VDC							
	FREQUENCY RANGE	47 ~ 63Hz							
INPUT	EFFICIENCY (Typ.)	78%	83%	84%	86%	86%			
	AC CURRENT (Typ.)	0.55A/115VAC 0.3	5A/230VAC						
	INRUSH CURRENT (Typ.)	COLD START 45A							
	LEAKAGE CURRENT	<2mA/240VAC							
		110 ~ 150% rated output power Protection type : Hiccup mode, recovers automatically after fault condition is removed							
PROTECTION	OVEREDAD								
		5.75~6.75V	13.8 ~ 16.2V	17.25 ~ 20.25V	27.6 ~ 32.4V	55.2 ~ 64.8V			
	OVER VOLIAGE	Protection type : Shut down o/p voltage, re-power on to recover							
	WORKING TEMP.	-20 ~ +60°C (Refer to "Derating Curve")							
	WORKING HUMIDITY	20 ~ 90% RH non-condensing							
ENVIRONMENT	STORAGE TEMP., HUMIDITY	-40 ~ +85°C, 10 ~ 95% RH							
	TEMP. COEFFICIENT	±0.03%/°C (0 ~ 45°C)							
	VIBRATION	10 ~ 500Hz, 2G 10min./1cycle, period for 60min. each along X, Y, Z axes							
	SAFETY STANDARDS Note.6	UL60950-1, CB(IEC6095	0-1),CCC GB4943.	1:2011 approved					
SAFETY &	WITHSTAND VOLTAGE	I/P-O/P:3KVAC I/P-FG	:2KVAC 0/P-FG:	0.5KVAC					
EMC	ISOLATION RESISTANCE	I/P-O/P, I/P-FG, O/P-FG:	100M Ohms / 500V[DC / 25°C/ 70% RH					
(Note 7)	EMC EMISSION	Compliance to EN55022	(CISPR22) Class B,	EN61000-3-2,-3					
	EMC IMMUNITY	Compliance to EN61000-4-2, 3, 4, 5, 6, 8, 11, EN55024, EN61000-6-1, light industry level, criteria A							
	MTBF	411.47Khrs min. MIL-HDBK-217F (25°C)							
OTHERS	DIMENSION	99*82*35mm (L*W*H)							
	PACKING	0.3Kg; 45pcs/14.5Kg/0.66CUFT							
NOTE	 All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25°C of ambient temperature. Ripple & noise are measured at 20MHz of bandwidth by using a 12° twisted pair-wire terminated with a 0.1uf & 47uf parallel capacitor. Tolerance : includes set up tolerance, line regulation and load regulation. Line regulation is measured from low line to high line at rated load. Load regulation is seasured from 0% to 100% rated load. For the request of GB4943,1,the power supply is only suitable for use in the altitude 2000m below and the non tropical climate condition. 								
	EMC directives. For guidance on how to perform these EMC tests, please refer to "EMI testing of component power supplies." (as available on http://www.meanwell.com)								

File Name:NES-25-SPEC 2012-09-24

25W Single Output Switching Power Supply

