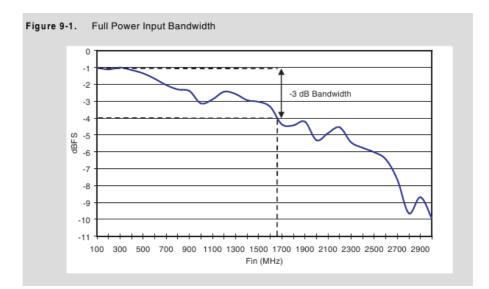
iADC Characterization Report

Sandeep C. Chaudhari, Kaushal D. Buch S. Harshvardhan Reddy

iADC sampler card is a part of ROACH-I based upgrade correlator which is being used to digitize the broadband analog signals. The characterization of iADC is important in order to decide the stable operating range of FPGA back-end. This will be useful in deciding the headroom for accommodating RFI.

iADC Specifications :-

AT84AD001C Dual 8-bit 1 Gsps ADC			
Vpp	= 500mV		
Bits	= 8-bits		
lsb	= Vpp/2^8	= 1.953mV	
Full power Input Bandwidth	= 1.5 GHz (-3	3 dB)	


For Each bit the power level required is as follows :-Formula = $[(Vpp x 2^n)/2^8] + LSB/2$

Based on above specifications, the theoretical input power required for setting each individual bit is as shown in the table below :-

Bits	Voltage (in mV)	Power in (dBm) (Bitwise power)
0000 0010	2.93	-46.684174
0000 0100	6.836	-39.324638
0000 1000	14.648	-32.704774
0001 0000	30.273	-26.399365
0010 0000	61.523	-20.239788
0100 0000	124.023	-14.150525
1000 0000	249.023	-8.095795
[1]0000 0000	499.023	-2.058181

iADC Board Losses :-

- The iADC board losses are because of two components as mentioned below :-
- 1. ADC analog input bandwidth response is an important factor (Typical ~ 1.5 dB)

2. RF Transformer :-

ADLT2-18 surface mount RF Transformer 50Ω 30 to 1800MHz typical characteristics :-

Incurred insertion loss $\sim 0.8 \text{ dB}$

iADC Characterization Test Setup :-

The characterization has been carried out using lab noise source and sine wave generator. **Instruments :-**

- 1. Micronetics Wireless Noise Generator
- 2. Sine wave Generator Agilent N9310A
- 3. Spectrum Analyzer Rhode & Schwarz FSP (9kHz to 7GHz)
- 4. 4-Antenna Packetized Correlator F-engine & Corresponding python script.

iADC Board test with noise source & sine wave :-

Characterization of iADC with sine wave can gives us a good perspective of behavior for the fundamental component of fourier transform i.e. sine wave. But characterization with noise source resembles in behavior to that of antenna signals – random in nature. Hence power of a noise signal is nothing but it's standard deviation. The spread of the distribution (in terms of standard deviation) decides the number of bits exercised in an ADC.

- 1. Sine wave test :- Saturated at Pin = 0.5 <u>dBm@1.5GHz</u> analog bandwidth of ADC
- 2. Noise source test :- Saturated at Pin = -16 dBm@1<u>.5GHz</u> analog bandwidth of ADC

Standard Deviation Test Using Noise Source:-

Design Test Setup :-

4 to 5 bits

3 to 4 bits

2 to 3 bits

1 to 2 bits

0 to 1 bits

- 1. Design Tested :-Packetized Correlator–F-engine (r_128w_512_11_r370_mod3_1_2011_Nov_29_1610.bof)
- Testing & plotting script : "corr_adc_time.py" The design has been modified to make it compatible with "corr_adc_time.py" script. This test is carried out to measure +/-3σ spread of input power level.

30 to 32

14.76 to 15.40

7.21 to 7.50

3.29 to 3.45

1.65

-22.54

-28.54

-34.95

-42.06

-50.30

	•••• <u></u> •••••		
Bits Utilized	3σ (Therotical)	3σ (Measured/adjusted)	Pin @1.5GHz (in dBm) with losses
6 to 7 bits	(64 to 127)	115 to 122	-11.09
5 to 6 bits	(32 to 63)	61 to 64	-16.62

gmrt@rchpc3:~\$ corr_adc_time.py -t 100000 -a 0x

(16 to 31)

(8 to 15)

(4 to 7)

(2 to 3)

(0 to 1)

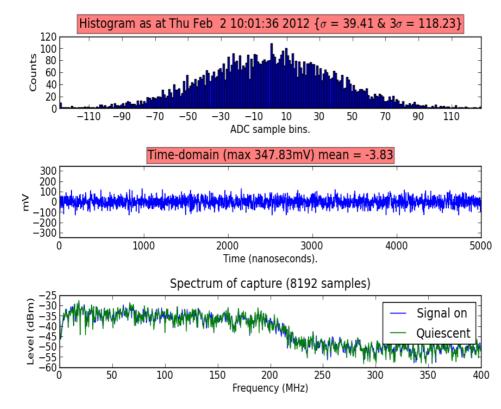


Fig 1: iADC 6 to 7-bits utilization Histogram

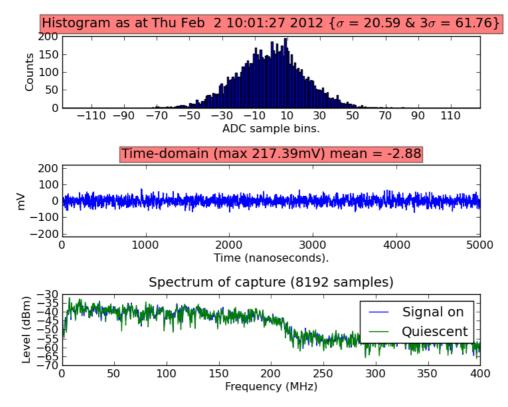


Fig 2: iADC 5 to 6-bits utilization Histogram

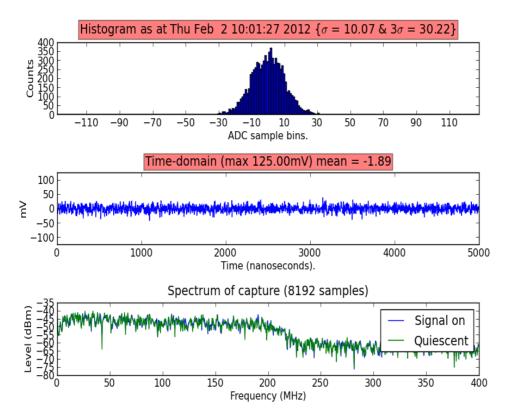


Fig 3: iADC 4 to 5-bits utilization Histogram

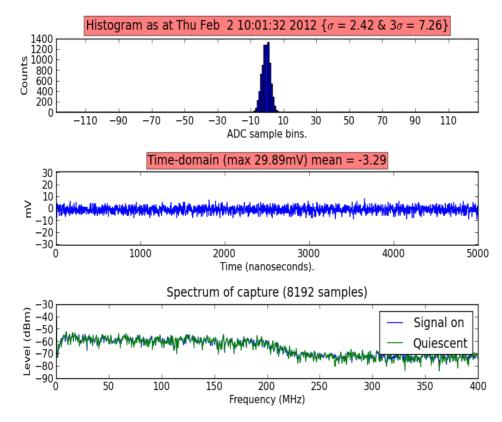


Fig 4: iADC 4 to 3-bits utilization Histogram

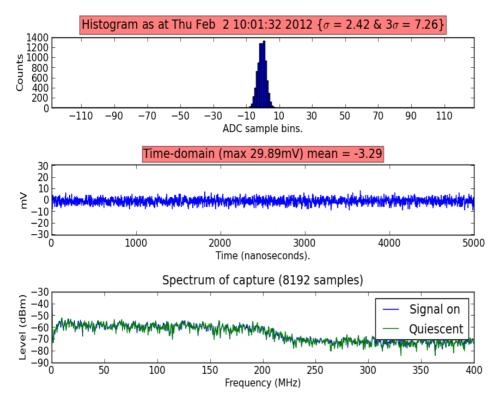


Fig 5: iADC 3 to 2-bits utilization Histogram

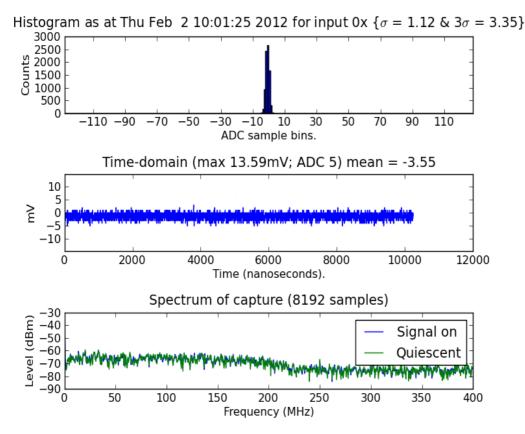


Fig 6: iADC 2 to 1-bits utilization Histogram

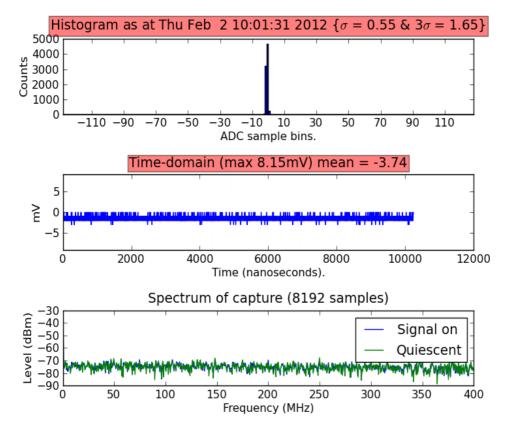


Fig 7: iADC 0 to 1-bits utilization Histogram

Conclusion :-

iADC characterization test were carried out for sine wave and noise inputs to determine range of operation of ADC for stable operation of digital back-end. After providing 1-bit headroom for RFI, the optimal noise input power over the analog bandwidth of ADC should be in the range of (-16.7dBm to -22.5dBm).

The ADC saturates at -11.2dBm power level over analog bandwidth of ADC.

References :-

- 1. AT84AD001C ADC Datasheet
- 2. ADLT2-18 RF transformer Datasheet

Version History :-

- 1. Version 1: Initial Version 2^{nd} February 2012
- 2. Version 2 : Details about test setup and conclusion 30th March 2012