NCRA • TIFR

National Centre for Radio Astrophysics

Internal Technical Report GMRT/TMS/001-Feb2013

1

Cost effective Temperature monitoring system for GMRT upgrade

Authors

Atul A. Ganla & D.k Nanaware

Email:

<u>atul@gmrt.ncra.tifr.res.in</u> <u>dnyandeo@ncra.tifr.res.in</u>

Objective: To design a general purpose temperature monitoring system

Revision	Date	Modification/ Change
Ver. 1	02/08/13	Initial Version

1. Introduction

In the upgraded GMRT system some systems and components are critical so it was decided to design a temperature monitoring system that could measure and record temperature at various locations in receiver room, critical components and various sub systems

What is a temperature sensor?

These sensors use a solid-state technique to determine the temperature.

That is to say, they don't use mercury (like old thermometers), bimetallic strips (like in some home thermometers or stoves), nor do they use thermistors (temperature sensitive resistors). Instead, they use the fact as temperature increases, the voltage across a diode increases at a known rate. (Technically, this is actually the voltage drop between the base and emitter - the Vbe - of a transistor. By precisely amplifying the voltage change, it is easy to generate an analog signal that is directly proportional to temperature. There have been some improvements on the technique but, essentially that is how temperature is measured.

Because these sensors have no moving parts, they are precise, never wear out, don't need calibration, work under many environmental conditions, and are consistent between sensors and readings. Moreover they are very inexpensive and quite easy to use.

2. Target performance specifications

In the temperature monitoring system we have used National semiconductor make LM35

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.

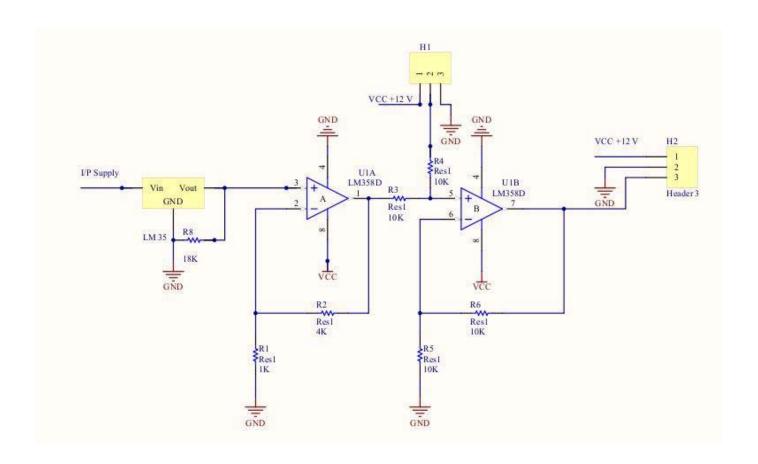
Features

Calibrated directly in Celsius (Centigrade) Linear + 10.0 mV/ C scale factor 0.5 C accuracy guarantee (at +25 C) Rated for full -55 to +150 C range Suitable for remote applications Low cost due to wafer-level trimming Operates from 4 to 30 volts Less than 60 μ A current drain Low self-heating, 0.08 C in still air Non linearity only \pm 1/4 C typical Low impedance output, 0.1 Ω for 1 mA load How to measure temperature!

Using the LM35 is easy, simply connect the pin no1 to power supply and the pin no 2 to ground pin 3 will have an analog voltage that is directly proportional (linear) to the

National Centre for Radio Astrophysics

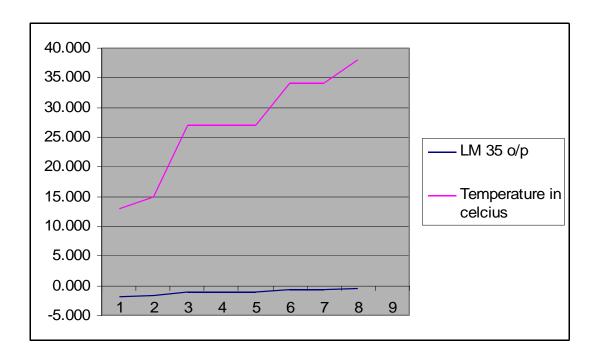
temperature. The analog voltage is independent of the power supply.


To convert the voltage to temperature, simply use the basic formula: formula: Temp in Celsius = (Vout in mV) / 10

3. Design description

This circuit works on single +12 Vdc header H2 supply the output of LM35 is connected to a amplifier (dual op-amp Lm358) the gain of the amplifier is 5. the output is connected to another op-amp. The second op-amp works is dual mode header H1

1) unity gain amplifier 2)To measure temperature below 0 degree Celsius with positive supply


It has got jumper setting to toggle between two modes output is measured on header H2

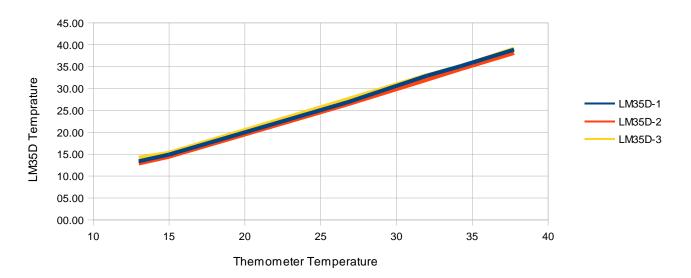
Revision	Date	Modification/ Change
Ver. 1	02/08/13	Initial Version

4. Design validation

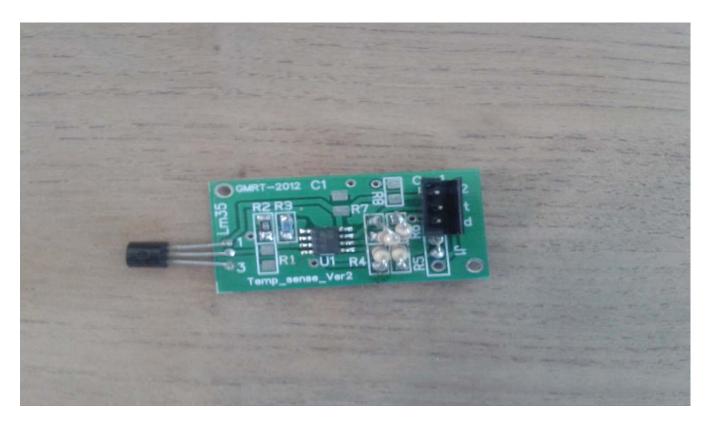
After assembly the pcb is calibrated using thermometer as various temperatures the graph shows (plot 1)the output of LM 35 amplified with temperature measured using thermometer

Plot1

After that 3 sets of pcbs were assembled and calibrated using mercury thermometer reading were taken at different temperatures and the output is calculated by using formula


Temp 0c = ((VOUT + 2.5)/5)*100

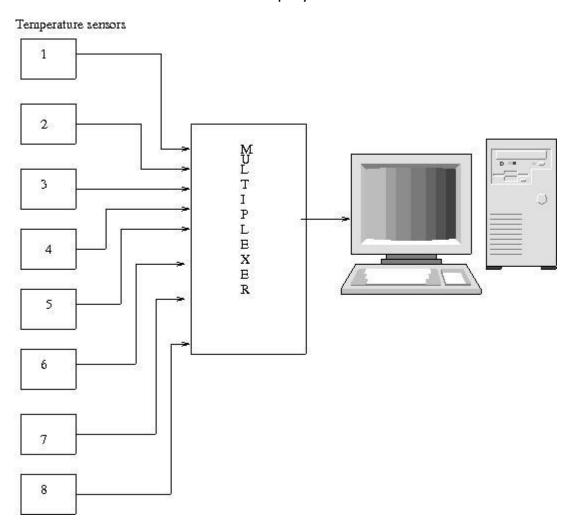
And plotted as shown in plot2



National Centre for Radio Astrophysics

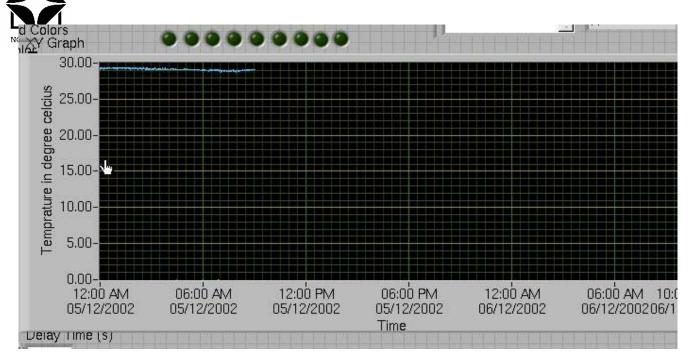
Thermometer V/s LM35D

Plot2


Temperature sensors are connected to analog multiplexer ADG506 maximum 8 sensors can be connected to one multiplexer. this multiplexer is connected to National instruments make hardware DAQ (data acquisition) NI USB 6008. which is having

Revision	Date	Modification/ Change
Ver. 1	02/08/13	Initial Version

Analog and digital i/p ,o/p ports. Control for multiplexer is connected to digital o/p of DAQ and output of multiplexer is connected to analog i/p of the DAQ


The DAQ is controlled by national instruments make software called Labview The program wrote using Labview performs following task

It send digital data 0000 reads back multiplexer o/p this will be channel1 displays on to front panel of the program then it will increment digital data 0001 and reads channel2 data and write it into file and display it on GUI

The above setup was installed in Lab and tested for long term stability the following plot shows output satble

National Centre for Radio Astrophysics

After testing 4 assembled pcbs were placed at different locations in correlator room as shown in the fig

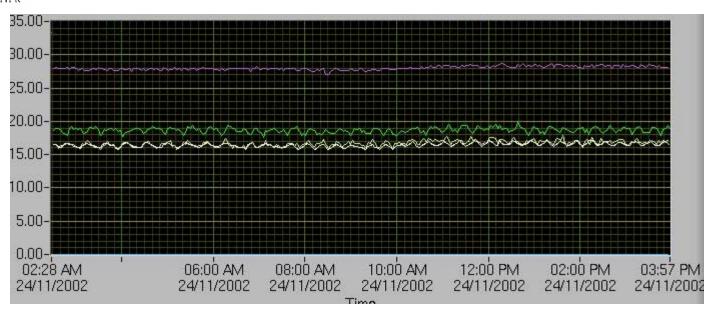
Revision	Date	Modification/ Change
Ver. 1	02/08/13	Initial Version

Correlator Room

	GSB RACK	S		
1	2	3		
FP	A D Temperature S GA Racks	c nsors	В	
1	2	3		
				Entrance

After collecting data from temperature sensors. Data was plotted using Labview software

White Line -Sensor A


Green Line-Sensor B

Violet Line-Sensor C

Yellow Line-Sensor D

NORA TIER

National Centre for Radio Astrophysics

5. Conclusions

Low cost basic circuit using LM35 is tested and found to be working as expected,in a compact size of length 38.5mm width 20.5mm and height 9 mm so that it can be installed in any narrow space for eg. with in rack or Plug in unit or different locations in the receiver room

The circuit has been design to work on single power supply to simplify the working During the tests in the cor-relator room periodic ripple behavior is observed which is been was not observed in lab tests

we are suspecting power supply related more tests has been carried out to understand the problem

6.References

- 1) http://html.alldatasheet.com/html-pdf/8880/NSC/LM35D/36/1/LM35D.html
- 2) design with operational amplifiers and analog integrated circuits by sergio franco

7.Annexure

Revision	Date	Modification/ Change
Ver. 1	02/08/13	Initial Version

LM35

Precision Centigrade Temperature Sensors

General Description

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±1/4°C at room temperature and $\pm 3/4$ °C over a full -55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C temperature range, while the LM35C is rated for a -40° to +110°C range (-10° with improved accuracy). The LM35 series is available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.

Features

- Calibrated directly in ° Celsius (Centigrade)
- Linear + 10.0 mV/°C scale factor
- 0.5°C accuracy guaranteeable (at +25°C)
- Rated for full -55° to +150°C range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than 60 µA current drain
- Low self-heating, 0.08°C in still air
- Nonlinearity only ±½°C typical
- \blacksquare Low impedance output, 0.1 Ω for 1 mA load

Typical Applications

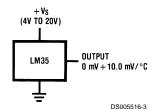
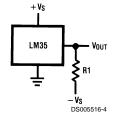
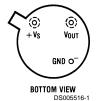



FIGURE 1. Basic Centigrade Temperature Sensor (+2°C to +150°C)



Choose R₁ = $-V_S/50 \mu A$ V _{OUT}=+1,500 mV at +150°C = +250 mV at +25°C = -550 mV at -55°C

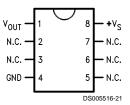
FIGURE 2. Full-Range Centigrade Temperature Sensor

Connection Diagrams

TO-46 Metal Can Package*

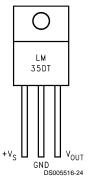
*Case is connected to negative pin (GND)

Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DH


See NS Package Number H03H

TO-92 Plastic Package

Order Number LM35CZ, LM35CAZ or LM35DZ See NS Package Number Z03A


SO-8 Small Outline Molded Package

N.C. = No Connection

Top View Order Number LM35DM See NS Package Number M08A

TO-220 Plastic Package*

*Tab is connected to the negative pin (GND).

Note: The LM35DT pinout is different than the discontinued LM35DP.

Order Number LM35DT See NS Package Number TA03F

-40°C to +110°C

 0° C to +100 $^{\circ}$ C

Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage +35V to -0.2V
Output Voltage +6V to -1.0V
Output Current 10 mA
Storage Temp.;

TO-46 Package, -60°C to +180°C

TO-92 Package, -60°C to +150°C

SO-8 Package, -65°C to +150°C

TO-220 Package, -65°C to +150°C

Lead Temp.: TO-46 Package,

(Soldering, 10 seconds)

TO-92 and TO-220 Package,
(Soldering, 10 seconds)

SO Package (Note 12)

Vapor Phase (60 seconds)

Infrared (15 seconds)

ESD Susceptibility (Note 11)

Specified Operating Temperature Range: T_{MIN} to T_{MAX}
(Note 2)

LM35, LM35A

-55°C to +150°C

LM35C, LM35CA

LM35D

300°C

Electrical Characteristics

(Notes 1, 6)

			LM35A			LM35CA			
Parameter	Conditions		Tested	Design		Tested	Design	Units	
		Typical	Limit	Limit	Typical	Limit	Limit	(Max.)	
			(Note 4)	(Note 5)		(Note 4)	(Note 5)		
Accuracy	T _A =+25°C	±0.2	±0.5		±0.2	±0.5		°C	
(Note 7)	T _A =-10°C	±0.3			±0.3		±1.0	°C	
	T _A =T _{MAX}	±0.4	±1.0		±0.4	±1.0		°C	
	T _A =T _{MIN}	±0.4	±1.0		±0.4		±1.5	°C	
Nonlinearity	T _{MIN} ST _A ST _{MAX}	±0.18		±0.35	±0.15		±0.3	°C	
(Note 8)									
Sensor Gain	T _{MIN} ≤T _A ≤T _{MAX}	+10.0	+9.9,		+10.0		+9.9,	mV/°C	
(Average Slope)			+10.1				+10.1		
Load Regulation	T _A =+25°C	±0.4	±1.0		±0.4	±1.0		mV/mA	
(Note 3) 0≤I _L ≤1 mA	$T_{MIN} \leq T_A \leq T_{MAX}$	±0.5		±3.0	±0.5		±3.0	mV/mA	
Line Regulation	T _A =+25°C	±0.01	±0.05		±0.01	±0.05		mV/V	
(Note 3)	4V≤V _S ≤30V	±0.02		±0.1	±0.02		±0.1	mV/V	
Quiescent Current	V _S =+5V, +25°C	56	67		56	67		μA	
(Note 9)	V _S =+5V	105		131	91		114	μA	
	V _S =+30V, +25°C	56.2	68		56.2	68		μA	
	V _S =+30V	105.5		133	91.5		116	μA	
Change of	4V≤V _S ≤30V, +25°C	0.2	1.0		0.2	1.0		μA	
Quiescent Current	4V≤V _S ≤30V	0.5		2.0	0.5		2.0	μΑ	
(Note 3)									
Temperature		+0.39		+0.5	+0.39		+0.5	μΑ/°C	
Coefficient of									
Quiescent Current									
Minimum Temperature	In circuit of	+1.5		+2.0	+1.5		+2.0	°C	
for Rated Accuracy	Figure 1, I _L =0								
Long Term Stability	T _J =T _{MAX} , for	±0.08			±0.08			°C	
	1000 hours								

Electrical Characteristics

(Notes 1, 6)

			LM35		L			
Parameter	Conditions		Tested	Design		Tested	Design	Units
		Typical	Limit	Limit	Typical	Limit	Limit	(Max.)
			(Note 4)	(Note 5)		(Note 4)	(Note 5)	
Accuracy,	T _A =+25°C	±0.4	±1.0		±0.4	±1.0		°C
LM35, LM35C	T _A =-10°C	±0.5			±0.5		±1.5	°C
(Note 7)	$T_A = T_{MAX}$	±0.8	±1.5		±0.8		±1.5	°C
	T _A =T _{MIN}	±0.8		±1.5	±0.8		±2.0	°C
Accuracy, LM35D	T _A =+25°C				±0.6	±1.5		°C
(Note 7)	$T_A = T_{MAX}$				±0.9		±2.0	°C
	$T_A = T_{MIN}$				±0.9		±2.0	°C
Nonlinearity	$T_{MIN} \leq T_A \leq T_{MAX}$	±0.3		±0.5	±0.2		±0.5	°C
(Note 8)								
Sensor Gain	$T_{MIN} \leq T_A \leq T_{MAX}$	+10.0	+9.8,		+10.0		+9.8,	mV/°C
(Average Slope)			+10.2				+10.2	
Load Regulation	T _A =+25°C	±0.4	±2.0		±0.4	±2.0		mV/mA
(Note 3) 0≤I _L ≤1 mA	$T_{MIN} \leq T_A \leq T_{MAX}$	±0.5		±5.0	±0.5		±5.0	mV/mA
Line Regulation	T _A =+25°C	±0.01	±0.1		±0.01	±0.1		mV/V
(Note 3)	4V≤V _S ≤30V	±0.02		±0.2	±0.02		±0.2	mV/V
Quiescent Current	V _S =+5V, +25°C	56	80		56	80		μA
(Note 9)	V _S =+5V	105		158	91		138	μA
	V _S =+30V, +25°C	56.2	82		56.2	82		μA
	V _S =+30V	105.5		161	91.5		141	μA
Change of	4V≤V _S ≤30V, +25°C	0.2	2.0		0.2	2.0		μA
Quiescent Current	4V≤V _S ≤30V	0.5		3.0	0.5		3.0	μA
(Note 3)								
Temperature		+0.39		+0.7	+0.39		+0.7	μΑ/°C
Coefficient of								
Quiescent Current								
Minimum Temperature	In circuit of	+1.5		+2.0	+1.5		+2.0	°C
for Rated Accuracy	Figure 1, I _L =0							
Long Term Stability	$T_J = T_{MAX}$, for	±0.08			±0.08			°C
	1000 hours							

Note 1: Unless otherwise noted, these specifications apply: $-55^{\circ}C \le T_{J} \le +150^{\circ}C$ for the LM35 and LM35A; $-40^{\circ} \le T_{J} \le +110^{\circ}C$ for the LM35C and LM35CA; and $0^{\circ} \le T_{J} \le +100^{\circ}C$ for the LM35D. $V_{S} = +5V$ dc and $I_{LOAD} = 50$ μ A, in the circuit of *Figure 2*. These specifications also apply from $+2^{\circ}C$ to T_{MAX} in the circuit of *Figure 1*. Specifications in **boldface** apply over the full rated temperature range.

Note 2: Thermal resistance of the TO-46 package is 400°C/W, junction to ambient, and 24°C/W junction to case. Thermal resistance of the TO-92 package is 180°C/W junction to ambient. Thermal resistance of the small outline molded package is 220°C/W junction to ambient. Thermal resistance of the TO-220 package is 90°C/W junction to ambient. For additional thermal resistance information see table in the Applications section.

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

Note 4: Tested Limits are guaranteed and 100% tested in production.

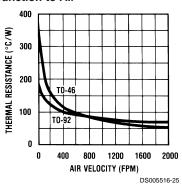
Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.

Note 6: Specifications in **boldface** apply over the full rated temperature range.

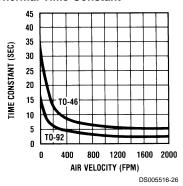
Note 7: Accuracy is defined as the error between the output voltage and 10mv/°C times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in °C).

Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.

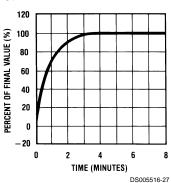
Note 9: Quiescent current is defined in the circuit of Figure 1.

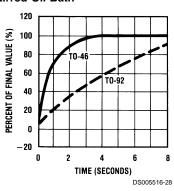

Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.

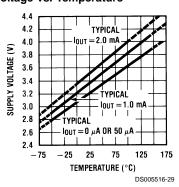
Note 11: Human body model, 100 pF discharged through a 1.5 $k\Omega$ resistor.

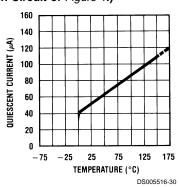

Note 12: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

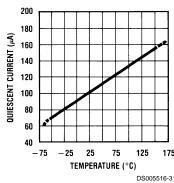
Typical Performance Characteristics

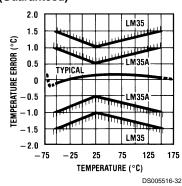

Thermal Resistance Junction to Air

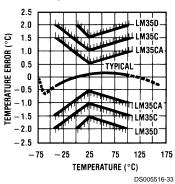

Thermal Time Constant


Thermal Response in Still Air

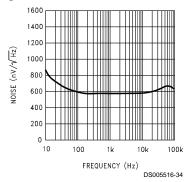

Thermal Response in Stirred Oil Bath


Minimum Supply Voltage vs. Temperature


Quiescent Current vs. Temperature (In Circuit of Figure 1.)


Quiescent Current vs. Temperature (In Circuit of Figure 2.)

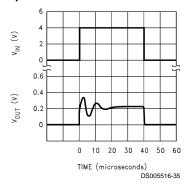
Accuracy vs. Temperature (Guaranteed)



Accuracy vs. Temperature (Guaranteed)

Typical Performance Characteristics (Continued)

Noise Voltage


Applications

The LM35 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about 0.01°C of the surface temperature.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM35 die would be at an intermediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.

To minimize this problem, be sure that the wiring to the LM35, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM35 die's temperature will not be affected by the air temperature.

Start-Up Response

The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course, in that case the V- terminal of the circuit will be grounded to that metal. Alternatively, the LM35 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM35 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM35 or its connections.

These devices are sometimes soldered to a small light-weight heat fin, to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor, to give the steadiest reading despite small deviations in the air temperature.

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance, θ_{JA})

	TO-46,	TO-46*,	TO-92,	TO-92**,	SO-8	SO-8**	TO-220
	no heat sink	small heat fin	no heat sink	small heat fin	no heat sink	small heat fin	no heat sink
Still air	400°C/W	100°C/W	180°C/W	140°C/W	220°C/W	110°C/W	90°C/W
Moving air	100°C/W	40°C/W	90°C/W	70°C/W	105°C/W	90°C/W	26°C/W
Still oil	100°C/W	40°C/W	90°C/W	70°C/W			
Stirred oil	50°C/W	30°C/W	45°C/W	40°C/W			
(Clamped to metal,							
Infinite heat sink)	(2	4°C/W)			(5	5°C/W)	

^{*}Wakefield type 201, or 1" disc of 0.020" sheet brass, soldered to case, or similar.

^{**}TO-92 and SO-8 packages glued and leads soldered to 1" square of 1/16" printed circuit board with 2 oz. foil or similar.

Typical Applications

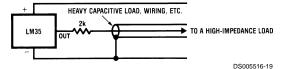


FIGURE 3. LM35 with Decoupling from Capacitive Load

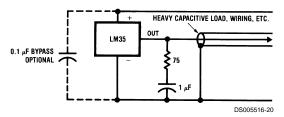


FIGURE 4. LM35 with R-C Damper

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see *Figure 3*. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see *Figure 4*.

When the LM35 is applied with a 200Ω load resistor as shown in Figure 5, Figure 6 or Figure 8 it is relatively immune to wiring capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from V_{IN} to ground and a series R-C damper such as 75Ω in series with 0.2 or 1 μ F from output to ground are often useful. These are shown in Figure 13, Figure 14, and Figure 16.

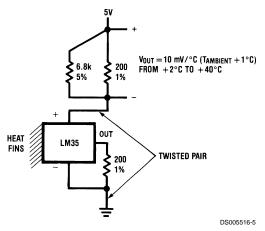


FIGURE 5. Two-Wire Remote Temperature Sensor (Grounded Sensor)

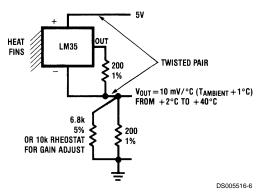


FIGURE 6. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

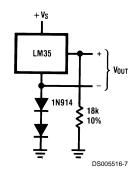


FIGURE 7. Temperature Sensor, Single Supply, -55° to +150°C

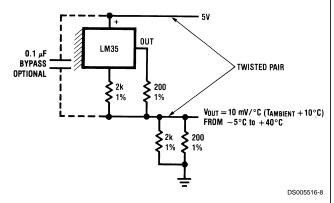


FIGURE 8. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

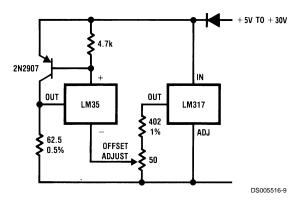


FIGURE 9. 4-To-20 mA Current Source (0°C to +100°C)

Typical Applications (Continued)

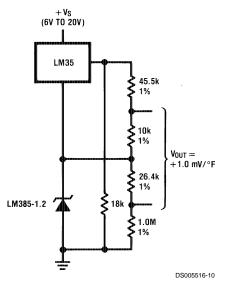


FIGURE 10. Fahrenheit Thermometer

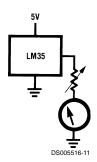


FIGURE 11. Centigrade Thermometer (Analog Meter)

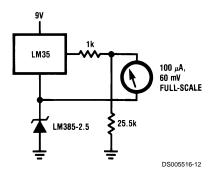


FIGURE 12. Fahrenheit ThermometerExpanded Scale
Thermometer
(50° to 80° Fahrenheit, for Example Shown)

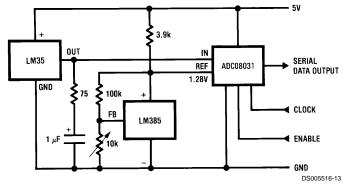


FIGURE 13. Temperature To Digital Converter (Serial Output) (+128°C Full Scale)

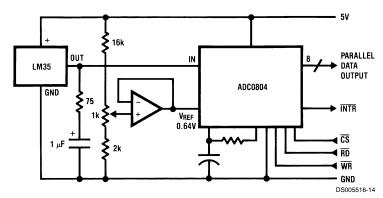
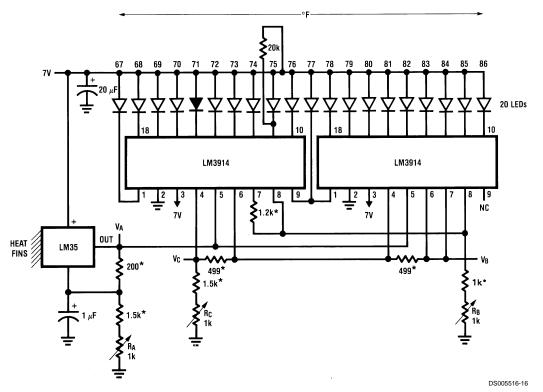



FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATE™ Outputs for Standard Data Bus to µP Interface) (128°C Full Scale)

Typical Applications (Continued)

*=1% or 2% film resistor Trim R_B for $V_B{=}3.075V$ Trim R_C for $V_C{=}1.955V$ Trim R_A for $V_A{=}0.075V$ + 100mV/°C x $T_{ambient}$ Example, $V_A{=}2.275V$ at 22°C

FIGURE 15. Bar-Graph Temperature Display (Dot Mode)

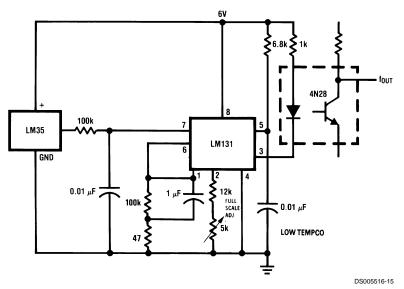
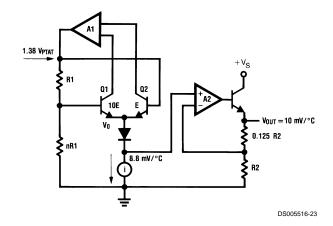
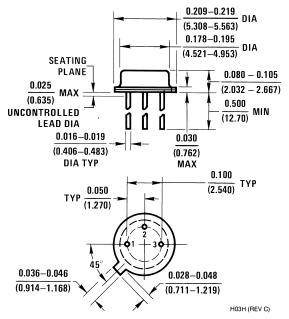
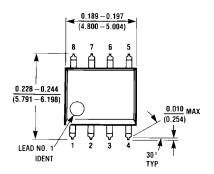
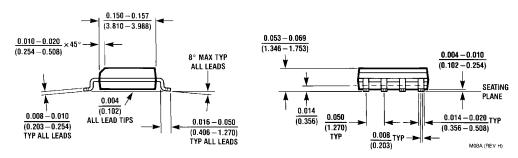
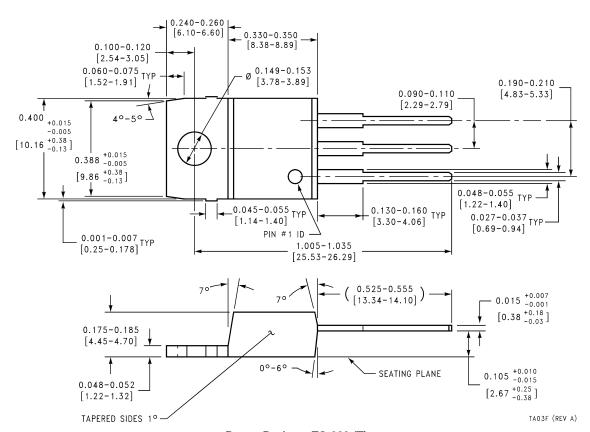




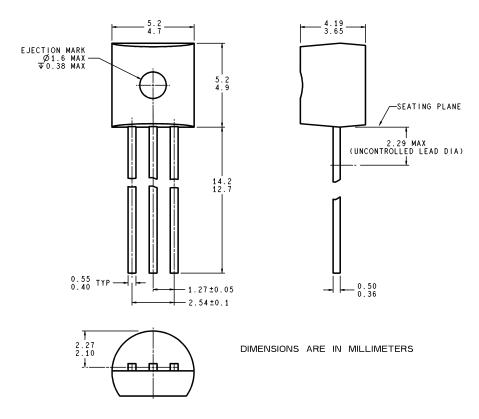
FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output (2°C to +150°C; 20 Hz to 1500 Hz)


Block Diagram



Physical Dimensions inches (millimeters) unless otherwise noted


TO-46 Metal Can Package (H)
Order Number LM35H, LM35AH, LM35CH,
LM35CAH, or LM35DH
NS Package Number H03H


SO-8 Molded Small Outline Package (M) Order Number LM35DM NS Package Number M08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Power Package TO-220 (T) Order Number LM35DT NS Package Number TA03F

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TO-92 Plastic Package (Z) Order Number LM35CZ, LM35CAZ or LM35DZ **NS Package Number Z03A**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

National Semiconductor

Email: ap.support@nsc.com

National Semiconductor Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

ZO3A (Rev G)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated