1. Introduction

1.1 Introduction to GMRT:

The Giant Metrewave Radio Telescope (GMRT), locatedr Pune in India, is the world’s
largest array of radio telescopes at meter wavéhesndf is operated by the National Centre for
Radio Astrophysics, a part of the Tata Institut€ohdamental Research, Mumbai.

The GMRT contains 30 fully steerable telescopeshe#b meters in diameter spread over
distances of upto 25 km. The design of these aatets based on th&MART' concept -
Stretch M esh Attached toRope Trusses.The reflector made of wire rope stretched between
metal struts in a parabolic configuration. This foguration works fine as the telescope operates
at long wavelengths (21 cm and above). Every aiatdras four different receivers mounted at
the focus. Figure 1.1 shows one such antenna. EaliVidual receiver assembly can rotate,
enabling the user to select any of them for theenlagion. GMRT antennas operate in five
frequency bands, centered at 153, 233, 327, 6101480 MHz. All these feeds provide dual
polarization outputs. In some configurations, duaftuency observations are also possible.

Figure. 1.1 Antenna
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Out of the 30 telescopes at GMRT, fourteen telessggre randomly arranged in the central
square of 1 km by 1 km in size. Rest sixteen teless are arranged in three arms of a nearly
—'Y’-shaped array each having a length of 14 km fritva array centre. The positions of the

antennas in the antenna array have been showgumeFL.2.

Neorth (km)

East (km)

Tha GMRT amay Os viewed from spoce. N ne large scole piciss he Indhvidual
anienncs ore 100 Imak 1o De seen, Insead helr IncaRonNs are Nacoied Dy Hm-
bols. In the biow up of the cenfral squom howaver, the INGVICUd cnifenncs can
be sen. Agwe generaed by Pl Lah and Pramkumar

Figure. 1.2 Antenna Array at GMRT

Therefore GMRT can act as an interferometer whisbsua technique known as aperture
synthesis to make images of radio sources. Theiphcédition or correlation of radio signals
from all the 435 possible pairs of antennas orfatemeters over several hours will thus enable
radio images of celestial objects to be synthesiiéid a resolution equivalent to that obtainable
with a single gigantic dish 25 kilometer in diaméfEhe maximum baseline in the array gives
the telescope an angular resolution (the smallegalar scale that can be distinguished) of about
1 arc-second, at the frequency of neutral hydrogermrovide seamless coverage from 100 MHz
to 1600 MHz in addition to upgrades to the mechelraad servo control systems to the antenna
and an improved high speed telemetry system fotralting the antennas remotely. This needs a
major upgrade to the backend electronics, two ptessolutions to the backend upgrade are
currently being developed — one based on multipi&4 boards, and second on GPU cluster.
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Currently, the GMRT is undergoing an upgrade. Ad péthe upgrade, the GMRT plans to
increase the bandwidth of the GMRT from the presaiie of 32 MHz to about 400 MHz and
also plans to upgrade the digital backend from GSBIRT software Backend) to FPGA and
GPU based backend.

1.2. Introduction to digital backend:

The digital backend is responsible for digital sigprocessing of the telescopic data used in
interferometer and beamforming modes.

The digital signal is processed through FX CoroeldEX : FFT followed by Multiplier) to
generate cross amplitude and phase information degtveach pair (baseline) among the 30
antennas to give the visibility information.

This data is used in imaging, continuum and mahgmastronomical observations.

1.3. Introduction to the project:

The Project of implementing and testing incoheRatketized Beamformer is a part of the
upgradation process of GMRT Backend system.

In Radio astronomy, beamforming is a technique Wwisaused to get the pulsar profile. It can be
of two types such as, Incoherent beamforming mautk @herent beamforming mode. The
incoherent beamformer adds voltage signals frofierdiit antennae and computes the basic self
term of voltage signals of the two polarizationkisTincoherent beamformer for 4 antennae and
2 orthogonal polarizations is implemented on a ipl@tROACH-boards (FPGA platform) and
tested with proper pulsar source.

1.4. Significance of the project:

Pulsars are weak radio sources, and their indiViplulaes often do not rise above the
background noise, so even with long base linepeaps as a point source. Beamforming is the
standard signal processing technique for its sttalyget its profile in higher resolution.
Incoherent beamformer exhibits a higher sensititigyVN times (N= no of antennae). As the
voltage signals of different antennae are squanedaaded, the incoherent beamformer provides
vital information of the pulsars. So as a part apigtion process of GMRT backend, incoherent
beamformer is implemented on FPGA.

FPGA is chosen as a hardware platform for itsomfigurable features and better computing
resources with lesser power conservation and higaedwidth compared to the software based
solution.

Within the scope of our project, we need to designbasic hardware and its interfacing utilities
and test it with real time sources. So, the 4 arderand 2 polarizations incoherent beamformer
is implemented on multiple Virtex-5 pro FPGA (ROAG@idard) to verify the functioning of the
incoherent beamforming.
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1.5. Aim and Objectives of the project:

The aim of this project is to design and implemardoherent packetized beamformer on

multiple ROACH boards (FPGA platform) for 4 antearfapolarizations and test the design with

Pulsars to get the pulsar profile.

The objectives of the project are:

* Design and implement the incoherent beamformed fntennae and 2 polarizations on
multiple FPGA platform (ROACH-board).

 Write scripts for the necessary interfacings of R@ACH-board with host PC.

» Simulation and implementation of design on hardwareverifying design logic.

* Verify the design using sky-test, i.e. testing wstbnals from radio sources (Pulsar).

1.6. Casper:

The CGenter for_Astronomy §ynal Rocessing and|Ectronics Rsearch (CASPER) is a global
collaboration dedicated to streamlining and sinypid) the design flow of radio astronomy
instrumentation by promoting design reuse throlnghdevelopment of platform-independent,
open-source hardware and software.

The CASPER tool flow is better known as the MSSGRt{ab/Simulink/System
Generator/EDK) or bee xps tool flow. It is the pdatn for FPGA-based CASPER development
and is the interface between several design antkmgntation environments.

Casper design environment in GMRT that is usedhdutie course of this project use
following version of different utility

= Matlab R2008a (v7.6.0)

= Simulink R2008b (v7.2)

= Xilinx System Generator v10.1.3.1386

= Xilinx EDK v11.5

= Xilinx ISE v11.5

= MSSGE libraries

The aim is to couple the real-time streaming penoice of application-specific hardware with
the design simplicity of general-purpose softw&y providing parameterized, platform
independent "gateware" libraries that run on reigoméble, modular hardware building blocks,
CASPER abstracts away low-level implementationitéetad allow astronomers to rapidly
design and deploy new instruments.

CASPER instruments use reconfigurable open-sowamdarare built around Xilinx FPGAs. The
GMRT uses Virtex 5 SXT95 based standalone FPGAgssing board also called ROACH

( Reconfigurable Open Architecture Computing Hanswa Figure 1.3 is an image of one such
ROACH board. The ROACH board also has the

Following features:

* A separate PowerPC runs Linux and is used to cahgedboard
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* CX4/XAUI/10GbE Networks Interfacing Cards
» ADC2x1000-8: Dual 8-bit, 1000Msps (or single 8-AM00Msps), Atmel/e2v
AT84AD001B ADC

Figure. 1.3 Virtex 5 ROACH board
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2. Theoretical concepts

2.1. Interferometry and correlator:

Interferometry is a technique in which waves angesimposed in such a way that one can
analyze wave property from residual phase and spactinterferometry makes use of the
principle of superposition to combine waves in aywhat will cause the result of their
combination to have some meaningful pattern thdtagnostic of the original state of the waves.
This works because when two waves with the sangémecy combine, the resulting pattern is
determined by the phase difference between thewawes— waves that are in phase will
undergo constructive interference while waves Hrat out of phase will undergo destructive
interference.

A radio interferometer measures the mutual coloerémnction of the electric field due to a
given source brightness distribution in the skye Bintennas of the interferometer convert the
electric field into voltages. The mutual coherehaection is measured by cross correlating the
voltages from each pair of antennas. The measuosd correlation function is also called
Visibility. In general it is required to measure thisibility for different frequencies (spectral
visibility) to get spectral information for the estomical source.

The cross correlation between two sigmalsandsz t

Rct=<sits2t+1>
Wherert the time delay between the two signals and angleleats is indicates averaging in
time.

According to Wiener-Khinchin theorem which sayse thower spectral density (PSD) of a
stationary stochastic process is defined to béhef its auto-correlation function that is if

Ret =<si1(t)s2(t + 1) >
then power spectral density functiSaf is

w

S.(F) = f R.(1)e~1277 dr

—oo

From the property of Fourier transform we have
R.(0) =<s,(D)s,(t) >= [ S.(f)df

2.2. Beamforming- coherent and incoherent:

Pulsars are the weak radio sources, so their tha@ipulses often do not rise above the
background noise level. Beamforming is the basibn&ue used for their studies. Beamforming
is a signal processing technique used in sensaysafor directional signal transmission or
reception. This is achieved by combining elememthiée array in such a way that signals at
particular angles experience constructive interfeee while others experience destructive
interference. In beamformer, the antennae sigraai<e added coherently or incoherently.
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Incoherent Beamforming

* In incoherent beamformer, the voltage signals isséyf converted into power spectra.
Then the power signals from the N dishes are coetbia give the single incoherent
beam. As the power spectra of the signals are adldeghase information is lost and no
need of phase corrections.
* Root of N improvement in sensitivity.
» Beamwidth of single antenna.
 Application in large scale pulsar search
» The mathematical representation of the incoheratrifermer:
Bi= (V12 +V32)

This approach is used in the all the design ircthese of this work.
Coherent beamformer:
* Voltage signals from the N dishes are combinedwe the single coherent beam. As the
voltages are added, it should be in phase with edeer to get the resultant coherent
signal referred as beam.
* N times improvement in sensitivity
» Beamwidth becomes narrower than the single anteypmearly 1/N times.

» Application in studies individual known pulsars lwits polarimetry studies.
» The mathematical representation of the coheremhfoeaner
Bi= (V1+V2)?

2.3. Pulsar observations requirements:

A pulsar is a rapidly rotating neutron star, highiggnetized which emits electromagnetic
radiation beams from its magnetic poles as it estal he radiation is visible to us only if one of
the poles points toward the earth. This appeaus s a very regular series of pulses with a
period beam as low as milliseconds. The compacireaf its emission makes it a point source
even for largest baseline on the earth.

Figure 2.1: Radiation from pulsar
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3. Packetized Beamformer Specifications

* Number of antennas: 4

¢ Polarization: Both polarization

e Number of spectral channels: 512

e Number of F engines: 4

e Number of X-engines: 8

e Number of spectral channels per X-engine:64
e Networks used: 1Gbps, XAUI link and 10 Gb Ethernet.
¢ Clock Frequency: 800 MHz

e Bandwidth : 400 MHz

e Base integration time: 0.163 milliseconds

¢ Data rate from 1 X-engine: 27.19 Mbps.

e Data rate from 8 X-engines: 223.2 Mbps.
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4. Description of the project work:

4.1. Four Antenna Packetized Beamformer Design:

4 antenna packetized beamformer uses four F-engimk8 X-engines.
Figure 3.1 shows the function performed by an Frengnd also shows after which stage the

signal for beamforming is taped.

Antenna Input
T
ADC
BOOMHz, B-bit

L S Yy v
Corse |
Delay

h S L.

Poyphase . .
Fiter Bank | ¥ —T1Functions of F-engine

L LI
FFT
Biplex
. SHE.
Fine Delay
Fringe stop

L L}

Equaiiser

Correlation & 7= Beam forming &
Integration . Integration

L LS
Shared Memaory

10 Gbe Block : -
on inard |1 l <_—~Functions of X-engine
Host PC Host PC

Figure 4.1. Functions performed by an F-engine
Each block mentioned Figure (3.1) is explainedrieftbelow:

1. ADC: The ADCs interfaced to the ROACH board are ADCD@8. They normally operate
at 800MHzand give an 8 bit output through 4 chaseelch operating at 200MHz. This is done
as the FPGA operates at 200MHz. In our design, AD€ is running at 400MHz clock

frequency.
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2. Delay: The radio sources in the sky are in motion overgky. This differential change in
position of the radio sources with respect to thte@nas gives some delays. Other than that, the
propagation delays from the antennas to the recanesalso considered. The whole delay that
need to corrected for proper phasing is divided into parts:

a. Integral multiple of clock is implemented in cee delay block.

b. Fractional delay is implemented in fine delagde stop block.

The data rate at the output will be 4 channels lot8at 200MHz.

3. PEB (Polyphase Filter Block) blocK:he polyphase filter bank implements a hamming
window. The PFB is used to reduce spectral leakagkto increase signal to noise ratio. The
data rate at the output will be 4 channels ead8dijits at 200MHz.

4. FFT (Fast Fourier TransformThe FFT block used is FFT Biplex Real 4x (real-gkad
biplex FFT). This block computes the real-sampladtfourier Transform using the biplex FFT
algorithm to use a complex core to transform twal séreams. The data rate of operation at FFT
output is 36 bits each at 400MHz. One of the steegives even channels while the other gives
odd channels. Each channel consists of an 18 @ix11 format)bit real part and an 18 bit
imaginary part.

5. Fine delay fringe stop Blockringe delay appears due to the down conversfaiihe RF
signal to the baseband signal. The delay valuesampensated for baseband signal but this give
a drift in phase for RF signal. To compensate ¢hi& in phase fringe stop is used. Using fine
delay fringe stop block we can apply maximum 1 kldelay.

6. Equalizer blockThis block scale down the amplitude of incomimgnf the channels by a
given factor to avoid the over flow during corr@atand integration. The scaling factor depends
on the integration time and power level of the algithis block casts the 36 bits input data into
8 bits data so that the bit growth during accunotatioes not overflow 32 bits.

7. Beamformer and Integration blockhe beamformer block in the design performs theasng

of voltage of a channel and adds it to the squérmlbage from other antennas. Its working is

explained in detail in section 3.2. The outputlighe self-correlated data. This beamformer data
is transmitted using 10GbE so that host PC cantteadata and store it on a disk for further use.

8. Integration time= (No. of FFT cycle)*(No of FFT point)/(clock fregncy)

9. Data rate packet size/integration time.
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4.2 BEAMFORMER SUBSYSTEM FLOWCHART

Figure 4.2 illustrates the signal flow of the beamier subsystem.

The flow diagram is divided into 2 parts : PART ARART B

INPUT DATA

Storage into RAM's

CORRELATION SUBSYSTEM

Addition from 4 antennas

128 timestamps to 1 value
SUBSYSTEM

Sync Cycle Accumulation
SUBSYSTEM

PART B
CONCATENATION

10 GbE BLOCK

Figure 4.2: Flowchart of Beamformer Subsystem
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4.3.BEAMFORMER SUBSYSTEM DOCUMENTATION

Figure 4.3 shows the block diagram of BEAMFORMBRCDH subsystem:

PART A:
INPUT DATA
¥
128 timestamps C:[I}RIEJEEETIII}N
Channeln . 384 SUBSYSTEM
ANTENNA 1 .
127 POL 0
4 anfenna
g ADDITION
128 timestamps- CORRELATION
Channeln . RAM2 L2 256 B sussvsTEM
ANTENNA2 7
253 DELAY
. 256 SELF
128 timestamps CORRELATION
Channeln RAM3 L3 128 L suBsysTEM
ANTENNA 3 )
' DELAY “
383 POL 1
4 antenna
384 ADDITION
, . SELF
128 timestamps CORRELATION
Channeln B RAM 4 B B SUBSYSTEM
ANTENNA4 - 4
511

Figure 4.3 Block diagram of Beamformer Subsystem:Ra
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BLOCK DIAGRAM

PART B:

Data from PART A
Pol0

)

CONTROL
ACC
128

Timestamps to
ad 1w

SUBSYSTEM

Data from PART A
Poll

SYNC CYCLE
ACCUMULATION
SUBSYSTEM

CONTROL

AcC 128

Timestamps to

- 1 Val
SUBSYSTEM

ACCUMULATION
SUBSYSTEM
1

0
HI
1 RAM
LO
SYNC CYCLE

CONCATENATION

Figure 4.4 Beamformer Subsystem Block Diagram: Bart
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4.3.1. INPUT TO THE SUBSYSTEM:

BEAMFORMER_INCOH

BEAMFORMER SUBSYSTEM

Ploe i [lvaid n  data_out
e akel

Figure 4.5 Position of the Incoherent Beamforméasgatem in the Packetized Correlator Design

The Beamformer subsystem comes after the Packetareblock. Packet reorder block is the
first part of an X-engine. It functions in the f@ing manner:

The input signal is given to the roach boards gclisithe F engine. The signal initially goes
through an ADC and then an FFT is taken. The data 612 channels of the F- engine is passed
on to the X- engine.

All 512 channels are not processed by a singlengie but in fact are distributed among the 8
X-engines of the system. Each X-engine takes respiity for processing only a certain
number of channels. 512 channels distributed arBogrtgines implies that each X-engine
processes 64 channels individually. This meansye®én channel is processed by the same X-
engine.

For eg. X engine 1: processes Channel 0, ChanGeb8nel 16............. Channel 504.
X engine 2: processes Channel 1, CH&hr@hannel 17............. Channel 505.
X engine 3: processes Channel 2, CHdaiftheChannel 18............. Channel 506.
X engine 4: processes Channel 3, Channel 11, CH#hne......... Channel 507.
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X engine 5: processes Channel 4, CHdrtheChannel 20............. Channel 508.

X engine 6: processes Channel 5, Channel 13, Cldnne......... Channel 509.
X engine 7: processes Channel 6, CHdaheChannel 22........... Channel 510.
X engine 8: processes Channel 7, Channel 15, Cizgne......... Channel 511.

Each X-engine processes only it's own set of chisnmespective of the antenna that the input
is coming from.

There is a checker within each X-engine which cketthe incoming channel belongs to it's
own set of channels. If it does belong then thedgine accepts the data and passes it on to the
beamformer subsystem for further processing.

If the incoming channel does not belong to it's et of channels it does not accept the data
and instead sends it to the 10 Gbe switch whiclkesoiti to the correct X- engine.

WORKING OF N - ENGINE BIDIRECTIONAL LOOPB. W.cx""
—————__10GhESWITCH:
INPUT FROM F-ENGINE

X- ENGINE 1

X-ENGIMNE 5

K- ENGINE 2

X- ENGINE &

SWITCH

X-ENGINE 7

X- ENGINE 4

—— QO

X-ENGINE B
UNIDIRECTIONAL QUTPUT TO 10GbE SWITCH J

Figure 4.6 Working of first part of X-engine
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The inputs to the beamformer subsystem are thewolly three signal

1. Data_valid signalBoolean signl; when high the incoming data at the input date
is valid.

2. Sync signalFor synchronization between differer-engines.

3. Input data 16 bit date
The input data comes in the following forn

Incoming Data Format for 1 channel

ANTENNA 1 ANTENNA 2 ANTENNA 3 ANTENNA 4

o X X X )

Timestamps (0-127) Timestamps (128-255) Timestamps (256-383) Timestamps (384-511)

Incoming Data Format for multiple channels

Every 8th channel goes into the same X-engine, There are 512 channels totally and 8 X-engines hence each
X-engine processes 64 channels.

for eg. Channel 0,Channel 8,Channel 16, ....... Channel 504 are processed by the 1st X-engine.
CHANNEL 0 CHANNEL 8 CHANNEL 16
Antenna 1 Antenna 2 Antenna 3 Antenna 4 Antenna 1 Antenna 2 Antenna 3 Antenna 4 Antenna 1
Ti Ti p Ti Ti Timestamps Timest: + . Ti
(0-127) (128-255) (256-383) (384-511) (0-127) (128-255) T(256-383} T(H £511) (0-127)

INCOMING DATA FOR X-ENGINE 1

Figure4.7 Incoming Datdormat at the input data pcfor X-enginel

4.32. WRITIG THE DATA TO RAM

Slice2

[data_in] Py 742 g dats 2!

— In1 Ot

clelay_bram1

antennal RAMIT

data_valid

Figure 4.8 Writing Data to the RAM
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1. Antenna and corresponding RANIhe incoming data is written to four single porANAs.

Each of these RAMs is 16 bit wide and has 128 addiecations. Each one of these RAMs

represents the corresponding antenna to whichatsel#longs. It is as follows.

NUMBER OF ANTENNA FROM WHICH
THE DATA IS COMING

THE RAM TO WHICH THE DATA IS
STORED

Antenna 1 RAM 1
Antenna 2 RAM 2
Antenna 3 RAM 3
Antenna 4 RAM 4

2. Generating address for RAM 9 bit counter gives the address. Only the 7 88 used to
generate the address for a particular RAM. The BM$% used for generating write enable
which is explained in the next point. This couritas reset and enable ports. The counter is reset
at every sync and it is enabled only when the dalid signal goes high.

3.Generating the write enable signal for RAGINe RAM has to be selected based on to which
antenna the incoming data belongs to. This is dpneising the 2 msb. Based on one them
output of the selection block for only one BRAMnisde high.

VALUE OF TWO MSB OF THE ADDRESS| THE RAM SELECTED
00 RAM 1
01 RAM 2
10 RAM 3
11 RAM 4

Then this output and data_valid are ANDed togetimet that is given to the write enable of that
particular RAM.

4.Input dataThe data comes as 128 time stamps for one ch&mongeleach antenna. This data is
written into the single port RAM whose write enalddigh.

4.3.3 DELAY SECTION:

1. Need As seen earlier (in Section 4.3.1)the format imck the incoming data arrives at the
data input port of the beamformer subsystem. Tha ftam antenna 1 arrives first and this is
followed by data from antennas 2, 3 and 4 sequbntiEhere are 128 timestamps of data from
each antenna. So data for antenna 2 timestamp éscd8 clock cycles after that of antenna 1
time stamp 1. As the data comes sequentially, fdatantenna 3 timestamp 1 comes 256 clock
cycles after that of antenna 1 time stamp 1 and fdeitantenna 4 timestamp 1 comes 384 clock
cycles after that of antenna 1 time stamp 1. lreotdat the data from all the antennas arrives at
the same time for the next step of processing tteks/s are used.
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2. ImplementationThe timestamps from all antennas are made toeawith the timestamps
from antenna4 by delaying them. In order to prouidese delays 3 separate delay blocks are
used for antenna 1, 2 and 3. The data from antémnaot delayed.

ANTENNA NUMBER DELAYED BY
Antenna 1 384
Antenna 2 256
Antenna 3 128

Thedelay_bram block from the CASPER DSP Block set is used heriha delay block
4.3.4. SELF-CORRELATION

This is done separately for each antenna. Thergferkave four correlation subsystems used in
the design.

1. Separation of 16 bit input datghe 16 bits of input data contain data for bothagzations.
The bottom 8 bits consist of data for polarizat@rand the top 8 bits consist of data for
polarization 1. These 8 bits are contain of rea smaginary parts of the data as can be seen
from the figure bellow.

16 bits
POL1 -IMAG POL1 -REAL POLD-IMAG POLO-REAL
4 hits 4 hits 4 bits 4 hits
MSB LSB
FORMAT OF 16 BIT INPUT DATA

Figure 4.9 Format of input data

The separation of 16 bits data of the 128 time ptam done sequentially. The 16 bit data is
separated usinglice block from the Xilinx simulink library. The processingf ¢he two
polarization has been done separately and in phhale onwards.

2.Squaring and AddingAs it is an imaginary number, the square of aagmary number is
done as follows:

(a+ib)(a-ib)*=a®+b* We have used the multiplication blotult from the Xilinx simulink
library for squaring andAddSub block from the Xilinx simulink library for additio. For a
particular antenna, 128 time stamps are squareadaed sequentially.
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4.35. ADDING DATA FROM ALL 4 ANTENNAS

For each antenna 2 outputs come out of the cooretatbsystem. One is for polarization O
the other one is for polarization 2. Each of theneg out 128 timestamps of correlated ¢
sequentially.

Now, the data from all the four antennas is addegethelAddSub block from the Xilinx
simulink library for addition. Th figure 4.8 illustrates the addition.

Antenna 1

Timestamp 1

Timestamp 2

Timestamp 3

Timestamp 4

Timestamp .

Timestamp .

Timestamp .

Timestamp .

Timestamp 127

imestamp 128

Antenna 2

Antenna 3

Timestamp 1

Timestamp 1

Timestamp 2

Timestamp 2

Timestamp 3

Timestamp 3

Timestamp 4 Timestamp 4
Timestamp . Timestamp .
+ Timestamp . Timestamp .
Timestamp . Timestamp .
Timestamp . Timestamp .

Timestamp 127

Timestamp 127

imestamp 128

imestamp 128

Antenna 4

Timestamp 1

Timestamp 2

Timestamp 3

Timestamp 4

Timestamp .

Timestamp .

Timestamp .

Timestamp .

Timestamp 127

imestamp 128

Result after adding
data from all antennag

Timestamp 1

Timestamp 2

Timestamp 3

Timestamp 4

Timestamp .
Timestamp .

Timestamp .

Timestamp .

Timestamp 127

imestamp 128

Figure 4.10 Adding data from all antenna

4.36. CREATING ONE VALUE OF 128 TIME STAMP VALUES

The subsysteri28 timestamp_to_1 ve subsystem does this operation.

Y

input_dats .y,

E] E]

[EXR

From1&

¥

contral_ace

¥y ¥ Y

sy yneontrol_asct

Fromi 5

=) Subsystem that converts

128 timestemps_to_1_val 128 time stamps to one
value for polarisation 0

3w - Addition of 128 timestamps line delay of 10 external
from 4 antenna for pol. 0

Polarisation 0

..a = —1Addition of 128 timestamps
% g i from 4 antenna for pol. 1
Folarisatior|

signal is given a pipeing Iy
[The sy sigrmalb which is present inside the klotk is also given & pigeling delay of 10

(this is the delay of the subsystem
upto this stage )

y

input s q¢

Bl
h AN 2

h 4

cantrol_ace

Il synontral_scel

Subsystem that converts
128 time stamps to one
value for polarisation 1

128 timestamps_to_1 _vall

Figure 4.1 Position of 128 timestamp®_1_val subsysm
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1.Input to this subsysterthe following 3 signals are the input to thisteys.

1. 128 timestamp data that comes sequentially atibet i
2. The sync signal that comes as an input to the Baxanefr subsystem.
3. The control_acc signal generated.

2. Generation of control acc signal

This signal has been derived inside the subsysténs signal goes high every time when
timestamp 128 from antenna 4 for every channelesriat the input. (i.e. when all 512
timestamps which represent 1 channel have arrit/éteanput.)

This signal is generated as follows:

[ b e

Address for the 4 RAMs that
store the input data from 4
sne.in antennas

9 bits counter

data_wvalid which is
input to beamformer
subsystem

data_valid Counter
a
From1? 2

511 is the address for antenna -.. R
4 timestamp 128.

Constant!

Figure 4.12 Generation of control_acc signal

3.Internal Structure of 128 timestamp to 1 val gatesn:

INPUT: 128 timestamps each
consisting of addition of
timestamps from 4 antennas

|Th\s delay iz used 50 that the current output value can CUTPUT: On\y one

H he used to add o the NEXT incoming value. value for one channel
which is the addition

of 128 timestamps at

the input of this block

}

7! a1

wall

T maldl futt

Bl

Fy

Generation of pulse 128

Register3

Constant i control_acc control_accl
= Delay
This mus is used in orcer to select between the input which

is to be added to the new input value if new accumulation starts [T sigral selects only the valse containing addiion of all
{i.rput pulse on porta 4083 high then 0 is a‘.jm fo | 128 timestamps to be written into the register
the current valug t begin the new summation

INTERNAL STRUCTURE OF 128 timestamps_to_1_val BLOCK

Figure 4.13 Internal structure of 128 timestampsltwal block.
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1) Logic Used The addition of 128 timestamps gives us the véduel channel. But next time
when 128 timestamps come at the input they belorgdifferent channel. So a new addition has
to begin after 128 time stamps belonging to onecbbhave been added.

A multiplexer has been used for to serve this psepéfter every 128 clock cycles, 0 is selected
as the second input to the adder. First inputecattder is the incoming timestamp data.

If the incoming time stamp data belongs to the sah@nel then the adders output of previous
cycle is used as a second input to the adder.

2) Generation of pulse signal of period 128 clogéle

Where is it usedThis signal is used as a select signal to theipheker Mux, which selects
between 0 and the previous output of the adddretihe second input to the adder.

Why period of 128? A period of 128 is selected as we want to ad®itiiBestamps.

3) Use of registerAt the output of this subsystem we need only waelee and that value should
be addition of all correlated 128 timestamp values.

At the output of the adder at every clock cyclehase addition of the time stamps. But only at
one particular cycle the output of the adder wilvé the addition of all correlated 128
timestamps. It is this value we desire. Wheneverdbntrol_acc signal goes high we have this
value at the output of the adder.

Hence, we have connected control_acc signal teetiadle port of the register so that only the
desired value is passed to the next stages.

Register used here is thélinx Register from Xilinx Blockset ant the multiplexer used is
Xylinx Bus Multiplexer from Xilinx Blockset

3.Outputs of this subsysterihe two outputs of this subsystem are the vald @ntrol _accl
signal. Vall is the value that is obtained by addall the 128 timestamps of that particular
channel. i.e. vall is the channel value. contratlas just the control_acc signal delayed by 4.

4.3.7. Accumulation of Sync cycles:

Sync cycle_accumulation subsystem is used for ghigpose. This block is used to integrate
multiple number of Sync cycles so as to obtain\araged value of the incoming data.

The 3 inputs coming into the subsystem are:

1. DATA_INPUT
2. CONTROL_ACC
3. SYNC
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The outputs coming out of the subsystem are:

1. INTEGRATED_CHANNEL_DATA
2. TX_VALID
3. END_OF _FRAME

The position of this subsystem in the design of ilbamformer subsystem is as shown in the
following diagram.

**Position in the flow of design

We have divided the subsystem into 3 main parterder to explain the flow of the design
through it.

indicates one of the 3 input signals into the block.

indicates a FROM block so as to pass intermediary signals. These act as

indicates one of the output signals out of the block.

input signals.

Gm a2 GOTO block so as to pass intermediary signals. These act as
output signals.

LEGEND

1. Generation of end of cycle signal:

This part depends on sync signal.

COUNTER
RST RELATIOMAL OPERATOR
SYMNC a3 EMND OF CYCLE
— T 5 EM =
[ ] a=b \/

b
SOFTWARE REGISTER

MUMEBER OF CYCLES FOR INTEGRATION

Figure 4.14 Generation of end_of _cycle
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A variable “number of cycle for integration” is pided by the user through a software register
so as to specify the number of cycles for which wamnt to integrate the channel data. It is
configured through the Python script.

Let us say the value in the software registenisrgasn.

The Sync signal is used to enable a counter, wheeralue of this counter equals the “number
of cycles for integration” provided in the softwaegister we get a high pulse. This high pulse
indicates than cycles have been integrated. Thus this high psitgeal is called to the “end of
cycle” signal. This signal is also used to resetdbunter so that the counting for next cycle can
begin.

2. Generation of new-accumulation,tx-valid,end of frane and we-
accumulator signals:

This part depends on control_acc and the end ¢& sygnals.

CONTROL ACC
|

END OF CYCLE COUNTER 1 WE ACCUMULATOR TX_VALID

I:\ RELATIONAL OPERATOR 1
7 RST AND n

1ad

b TX VALD END OF FRAME
:
COMSTANT n

]

]

)

AND NEGATIVE EDGE A

COUNTER 2 END OF FRAME

RELATIONAL OPERATOR 2

EN L3

|

a<=h NOT PULSE EXT
b NEW ACCUMULATION

CONSTANT

Figure 4.15 Generation of Tx_valid and end of frame

Generation of these signals:

Counter 1 is enabled by the “CONTROL_ACC” signateset by the “End of cycle” signal that
was obtained in the first system. The output of ttounter is given to Relational Operator 1.
Relational Operator 1 compares this value witha&3long as this value is less or equal to 63 we
get a high pulse.
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Counter 2 has only an Enable & no reset & even tdanter is enabled by using the
“CONTROL_ACC” signal. The output of this counter ggven to Relational Operator 1.
Relational Operator 1 compares this value witha&3long as this value is less or equal to 63 we
get a high pulse.

The ouput of Relational Operator 2 is inverted.sTinverted output is AND’ed with the output

of Relational Operator 1. The output of this ANDieg&s given to a negative edge block. The
output of this block is our “End of Frame signalhe output of this negative edge block is given
to a PULSE EXTENDER block. This output of this Wtods passed ahead to the

“New_Accumulation” signal.

The output of Relational Operator 1 is AND’ed witie “CONTROL_ACC” signal and the
output of this AND gate is AND’ed with the invedteutput of Relational Operator 2 mentioned
earlier. This is our “TX_VALID” signal.

Use of these signals:

We-accumulatorThis signal is nothing but the control_acc sigihalt comes into the 2715 cycle
accumulator subsystem. This signal is used asta emiable signal for PORT A and PORT B of
the dual port RAM. There is delay difference betwenable of port A and port B.

New-accumulationThis signal is the select signal to the Mux beftite adder in the part 3 of
this subsystem. This signal stays high for therendiuration of cycle 1 of ever cycle

integration. After that it stays low till the integion ofn cycles is completed.

Tx-valid: The “TX_VALID” signal is very important for tramsission over 10GbE. When this
signal is high the core of the 10GbE accepts tha o the buffer. So, in our case every time
addition ofn cycles of channel values of the comes out of tB&PA of the dual port RAM,
this signal goes high. That is, it is only in tlstlcycle that ifith cycle that we have the values
that we want to transmit to the 10GbE block.

End of FrameThe “End of Frame” is a very important signalnfréhe point of view of 10GbE.
The End of Frame signal should go high when thiedat of that particular packet comes to the
data input port of the 10GbE. So, in our case wdwdlition ofn cycles of channel number 63
data values values comes out of the PORT A ofitted port RAM, this signal goes high That
is, it is only in the last cycle, that ith cycle, that we channel number 63 data comesfaubrt

A this signal goes high

When the “End of Frame” signal is received, thekgaof data get transmitted over the Ethernet.
“End of frame” signals the transceiver to begimsmitting the buffered frame.
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3. Integration of multiple 2”15 cycles.

We have used a Dual port RAM for carrying out thegration of multiple cycles.
This dual port RAM is 32 bit wide and has 64 addiesations.

This part is further divided into 2 parts.

1) Address Generation for Port A and Port B

This depends on both SYNC as well as CONTROL_ACC
A Dual Port has 2 output ports A & B and requiresdhals at it's input.

ADDR_A(Address location for Data in Port A),DIN_Afut data for Port A), WE_A(When this
signal is high the Data pointed by DIN_A is writterto the address pointed by ADDR_A),
similarly it also possesses ADDR_B, DIN_B, WE_Bg§h are for writing into Port B.

COLUNTER
SYNC
£™-512 £
CONTROL ACC
[ | EN
ADDR A ADDITION OP
— ADDR_B
[ >—a L
ath S
1 b

Figure 4.16 Generation of address for dual port RAM

The ADDR_A is generated by a counter which is rdsetSYNC signal & enabled by the
“CONTROL_ACC” signal. Delays are adjusted accorthndADDR_B is then derived from
ADDR_A as shown in the above figure.

The depth of the RAM used is 64.

We require ADDR_B to be differing from ADDR_A bydhvalue 1. When ADDR_A is 0,
ADDR_B is 1. When ADDR_A is 1, ADDR_B is 2 and en. When ADDR_A goes to 63
ADDR_B goes to 0(63+1=64(1000000) in 6 bits (00000he addition operation is done by an
adder which uses wrap around mode in order to gs/¢he above result. The following table
illustrates the same.
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ADDRESS OF PORT A (ADDR_A) ADDRESS OF PORT B (ADDR_
0 1
1 2
2 3
63 0

2) Actual Integration done in dual port RAM:

This part needs the following signals:
Data Input Signal,we_acc,new_acc,addr_a,addr_b.

DUAL PORT RAM
DATA ADDRESS_A
ADDITION OP > ADDR_A CHANNEL DATA
NEW_ACCUMULATION a
atp | DATAA o s —— [
b WE ACCUMULATOR
e iy [
o F— PIPELINE
DELAY ADDRESS_B
MUX [ > |nooRs
DATA B
1] DATA B
WE ACCUMULATOR
) S— |

Figure 4.17 Accumulation using Dual Port RAM.

The NEW_ACCUMULATION that was obtained in th& 8ystem is used as a Select signal for
a MUX to choose between the output of Port B armbrestant of Value 0.The logic used for
integration is as follows:

Let us consider the integration of firstcycles.

Suppose in Cycle 1 the data for 64 channels conteghe system & in the next cycle i.e. Cycle
2 a completely new set of data for 64 channelsecemo the system. Subsequently in Cycle 3
the system receives a third set of data for 64 mblanand so on till thath cycle. We want the

output of our system to be the addition of thesgycles. This can be accomplished as follows.
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At the start of cycle 1 the “NEW_ACCUMULATION” sigt selects the constant value O (input
at port 1 of MUX) and this goes to the second ingfuadder for the addition operation. The data
keeps streaming into the first input of the adaerthe addition operation. Since the value at
second input is 0 the value at first input of adgets added by 0 only and hence moves to the
output of the Addition operation without a chang@hbis data is directly written to the PORT A of
the DUAL PORT RAM. This “NEW_ACCUMULATION” stays lgih for all the channels for
every 1st cycle of integration.

As was defined earlier the address at PORT B oDiHAL PORT RAM differs from address at
PORT A of the DUAL PORT RAM by 1. At the end ofdircycle addr_b will be pointing to
addressO0 of the dual port RAM and addr_a will bmtaog to address 63.

Let us now consider the start df 2ycle:

The “NEW_ACCUMULATION?” signal is designed that ibw selects the value at Port O of the
MUX. This is actually the output of Port B from tH®AM. Earlier addr_B was pointing to
address 0 then at the port B output contains tie fda channel 0.Now this value moves on to
the second input of the addition operation blockilé/ht the second input of the adder we have
the 2% cycles input data for channel 0.These 2 valuesgeed by the Addition Operation Block
& moves onto the input at DATA_A.

Thus in general it can be summarized as, the v@lw@ecertain channel at the first input of the
Addition operation block is it's value in th8%ycle & the value of inLcycle comes at second
input of the Addition operation block. Now in th& 8ycle, the addition of the values of tH&1
2" cycle get added to the now incoming data of fAeyle, in thenth cycle the value at second
input of the adder is the addition of all the poes cycles of that channel and at the first ingut o
the adder the incoming data is the value of thahaokl in thenth cycle.

This can be done for any number of cycles thatde wants to integrate.

Once this number has been reached, the Outpue@ulal Port RAM contains values that are to
be sent forward to the Packetization stage.

NOTE: This sync cycle accumulator works perfectty fl cycle of integration i.e. base
integration. But for greater number of integratitimsre are some unexpected drops in the output.
These have been removed using the logic of theoandbintegrator given in the Add-on
section(Chapter 9) of this report.

4.3.8 PACKETIZATION STAGE

1)_Requirements of 10GbE blackVe have input data in the form of 16 bits whidnt@ins
information from Polarization 0 and Polarization This data gets split into the respective
Polarizations and independent parallel processikgst place till this stage. At the Packetization
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stage the data is packetized according to the remeints of the 10GbE NIC. The 10GbE block
accepts only a 64 bit wide data stream with usézrdened frame breaks.

2)_Formation of 64 bits wide datdhe data from both polarizations is 32 bit widkoth
polarizations are concatenated to form a widthdkb#is. Then this 64 bits wide data is stored in
a Single port RAM before sending it to the 10GbEckl Then 10GbE block wraps this data
stream in a UDP frame for transmission. The blos&dufor concatenation is ti@oncat block
from Xilinx blockset in the Simulink library.

End cf Frame signal derived ——"— ) RAM for storage of final
from 215 accumulator block accumulated data
Mg il U
TX_VALID signal derived from o I'j!' ol ira
2+15 accumulator block  ——— TR bred
—Hai
Data from (32 bits) ==
POLARIZATION 1 === : feceq b (62 bits) 1 'Dita
Data from — %_,Q M) s »p ey
POLARIZATION O g
S T¥_valid
Concatenation ) iy
™
EOF(End of frame)
?B * et
a2

STRUCTURE BEFORE THE 10Gbe BLOCK

Figure 4.18 Temporary storage before 10GbE block.

3)The 10GbE setupThe 10GbE block requires inputs as data, resetvatid, tx_dest_ip,
tx_dest_port ,tx_end_of_frame. Out of these tx_@nldame, tx_valid and tx_data are generated
inside the BEAMFORMER_INCOH subsystem.

For the reset, tx_dest_ip and tx_dest_port softwagisters are present in the design. These
software registers are configured via a pythonpsciiihe following diagram shows the 10GbE
setup within the design. The 10GbE block used éstéh_Gbe_v2block from the BEE_XPS
System Blockset in the Simulink library.
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ghe rat tedt_up

Constants reset_gbe_ps reset_ghel Fram14 ledl_tx

i e r{te valid toi_aifull
- [m_n reg_in t_destiratien_ip [t _valicd] m Bl +_aful

t=_overflow

Constarnt!l  tx_destination_in_ps ghe2 Frop [t _dlest j
- - ! IR
tx_destination_ip r_dhata
im_in red_in tx_destination_port

Fi_valic

ghel _,—Ptx_desuaort .
Constants  tx_destination_port_ps o3 te_destination_part fH_smurE_p

t=_end_of, ﬂ.mgx_source_pnrt
. . e et
Software registers for resetting the 10 J ot e
Gbe core and configuring the destination N o 2 e TETIE
port address and destination ip address From12 B -

Fi_OMErTUn
[ZE_overrun_ack

Constants ten_Ghe_v2

bbdbiblodlbs

10 Gbe core inside the BEAMFORMER_INCOH subsystem

Figure 4.1' 10GbE setup in the design.

Figure 4.18 shows the signals that are given talth&bE block and the relationship betw:
them.

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel
Channel
Channel 62
Channel 63

Tx-data >

Tx-valid = |_| __J:|___J:|____J:|_|:|_
End of framec—> e e e _|:|_

Signals to the 10GbE

1]
1]
1]
1]

Figure 4.20 Signals to the 10GbE.

4)UDP packetThe 10GbEblock sends a out a UDP Packet. Packet Formatighensmittec
over 10GbE is as follows:

GMRT-TIFR Page 29



HEADER
42 bytes

DATA
512 bytes

UDP PACKET

Figure 4.21 UDP packet

And the data in the UDP packet is as shown in égu@o :

CHANNEL 0

CHANNEL 1

CHANNEL 2

CHANNEL 62

CHANNEL 63

POLARIZATION 1 (32 bits) POLARIZATION 2 (32 bits)
64 BITS
(V1) 2HVZP 2H VI Z+HVAI2 V1)~ 2+ 2 2+HV3I)2+(VA) 2
(VA ) 2+ (V2 24(V3 ) 2+(Va) 2 (V1) 24+(V2) 2+(V3) 2+ V4)"2
(VA Y 2 (U2 24 (U 3) 24 (W A) 2 (V1) A2+ 2) 24V 3) A2+ A2
(V1) 2+ (V2 24{V3) 2+(Vd) 2 (V1) Z4{V2)2+(V3)"2+(V4) 2
(V) 26(V2) 24{V'3) 2+(Va}"2 I V) 24+{V2)~2=(V3) 2+(V4)"2

DATA IN THE UDP PACKET

Figure 4.22 Data in the UDP packet.
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On a roach board, there are two X-engines; thezeffoere are two BEAMFORMER_INCOH
subsystems on a single roach board. The 10GbEhéoupper subsystem gives the output at
10GDbE port 2 of the roach board and the lower sstbsy gives the output at 10GbE portl of the
roach board.
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5. Calculations for Packetized
Beamformer

5.1 NUMBER OF BITS CALCULATION:

(NOTE: Where ever we say integration it refers to the2¢ycle accumulation.)
The following calculation is done for one polaripat The same is true for the next.

1)The 16 bits input data has the following coniarit.

16 bits
POL1 -IMAG POL1 -REAL POLD-IMAG POLO-REAL
4 hits 4 hits 4 bits 4 hits
MSB LSB
FORMAT OF 16 BIT INPUT DATA

We separate the real and imaginary parts of ealetnipation.

2) Then,

For each timestamp we do the following:

R*2,

Now the real part consists of 4 bits and the imagimpart consists of 4 bits.
So, the maximum value for each one of them will be:

Rma=1111, ha=1111.

That is Ryax= Imax=16.

3) Now we have to square each one of them:

So, it will be: ( Rua)?=( Ima)’= 256.

Therefore the number of bits required to reprei@atmaximum value will b& bits.

4) Now in the next step we have to add the redlgzprare and the imaginary part square.
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S0, (( Ruan™*( Inay?)=256+256=512.

Therefore the number of bits required to reprei@atmaximum value will b bits.

5) In the next stage we have to add all 128 tinmegsavalue and make one value out of them.
So, if all the 128 time stamp values have maximae then the value of addition will be:
128*( ( Ruan*+( Imay?)= 128*512=65536.

Therefore the number of bits required to repreti@atmaximum value will b&6 bits.

This value represents the value for 1 channel withtegration.

Therefore 16 bits would be enough to represent thehannel data values without
integration.

The same is true for other polarization.

5.2 NUMBER OF INTEGRATION CYCLES:

From the above calculation, we know that the maxmwalue for 1 channel can be represented
in 16 bits.

But we are using 32 bits for representing the ckhdata for one polarization.

Therefore the maximum number of integrations tlaatloe done are :

(232) - ( 216) — 216.

Therefore we conclude that the maximum numbertegjirations that we can do i£°265536.

(NOTE: Following calculations have been done for 1 X-argi

5.3 INTEGRATION TIME CALCULATION:

In one sync cycle, we have 128 time samples fdn ehannel are received from 4 antennas. In
one sync cycle 64 channels are received by onegien

Therefore we need 128*4*64 =32768 clock cycles.

The operating frequency of ROACH board is 200 MHzerefore, one clock cycle time period
is bnanosecond.Total time for one sync cycle todmpleted = 32768 *5ns
=0.163millisecond(163 microseconds.)

If integrate further, then for 10 cycles the tiraken would be 163 microsecond *10(1.63
milliseconds.)
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These values have been verified with the wirdshaftware . As a packet is sent out after the
specified numbers of integration cycles have besnpteted.

The following image is a wireshark snapshot forebiasegration . The leftmost column displays
the time at which the packet arrives from the Xirag

It is 163 micrsecond s*1(0.163milliseconds).

No.. | Time

Source Destination Protocal | Info }—i

1 — e — [
2 0.000166 192.168.8.201 192.168.8.200 upP Source port: 68888 Destination port: 60068
3 0.000328 192.168.8.201 192.155.8.299 UDP Source port: 68888 Destination port: 60068
4 0.000491 192.168.8.201 192.16¢.8.200 upp Source port: 60888 Destination port: 60088
5 0.0080657 192.168.8.201 192.168.8.260 upp Source port: 60888 Destination port: 60088
6 0.0680819 192.168.8,201 192.168.8.200 upP Source port: 60888 Destination port: 60060
7 0.608986 192.168.8.201 192.168.8.200 upp Source port: 60888 Destination port: 60068
§ 0.001143 192.168.8.2081 192.168.8.200 upp Source port: 60000 Destination port: 66000
9 0.001312 192,168.8.201 192.168.8.200 upp Source port: 60680 Destination port: 68860
10 0.001476 192.168.8.201 192.168.8.200 upp Source port: 60680 Destination port: 68668
11 0.001640 192.168.8.201 192.168.8.200 ubpP Source port: 68888 Destination port: 60068
12 0.601804 192.168.8.2081 192.168.8.200 upp Source port: 606688 Destination port: 68860
13 0.001966 192.168.8.201 192.168.8.260 upp Source port: 60888 Destination port: 60088

14 0.002129 192.168.8.201 192.168.8.200 Source port: 60888 Destination port: 60068 v

b Frame 1 (554 bytes on wire, 554 bytes captured

UDP

b Ethernet II, Src: MS-NLB-PhysServer-82 c0:aB:08:c9 (02:02:c0:a8:08:¢9), Dst: Broadcast (ff:ff:ffiff:ff:ff)
b Internet Protocol, Src: 192.168.8.201 (192.168.8.201), Dst: 192,168.8.200 (192,168.8.200

b User Datagram Protocol, Src Port: 60880 (68800), Dst Port: 60606 (60600
b Data (512 bytes)

Figure 5.1 Wireshark snapshot for 1 integrationieyc

The following image is a wireshark snapshot font2gration cycles . The leftmost column
displays the time at which the packet arrives ftbmX-engine.

It is 163 micrsecond s*2=0.326milliseconds.

No..  Time

2 0.000326
3 0.000655
4 0.000983
5 0.001312
6 0.001636
7 0.601963
8 0.002366
9 0.002696
10 0.002947
11 0.603348
12 0.603638
13 0.603933
14 0.004255

Source

192.168.
192.168.
192.168.
192.168.
192.168.8.201
192.168.8.281

8.201
8
8
8
8
8
192.168.8.201
8
8
8
8
8
8

.201
.201
.201

192.168.8.201
192.168.8.201
192.168.8.201
192.168.8.201
192.168.8.281
192.168.8.201

b Frame 1 (554 bytes on wire, 554 bytes captured)
b Ethernet II, Src: MS-NLB-PhysServer-82 c0:a8:08:c9 (62:02:c8:28:08:c9), Dst: Broadcast (ff:ff:ff:ff.ff:ff)
b Internet Protocol, Src: 192.168.8.201 (192.168.8.201), Dst: 192.168.8.200 (192.168.8.200)

b User Datagram Protocol, Src Port: 600066 (66060), Dst Port: 60060 (66860)
b Data (512 bytes)
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Figure 5.2 Wireshark snapshot for 2 integratiores.c

Destination

192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200
192.168.8.200

Protocol

upp
upp
upp
upp
upp
upp
upp
upp
upp
upp
upp
upp
upp

Info

source port: 68660
Source port: 66060
Source port: 60000
Source port: 60000
Source port: 60000
Source port: 60000
source port: 68660
Source port: 66060
Source port: 60000
Source port: 60000
Source port: 60000
Source port: 60000
source port: 68660

Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:

60000
60000
60000
60060
60060
60060
60000
60000
60000
60060
60060
60060
60000
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The following image is a wireshark snapshot foirit@gration cycles .
displays the time at which the packet arrives ftbmX-engine.

It is 163 micrsecond s*10(1.63milliseconds.)

No..  Time

2 0.001692
3 0.003343
4 0.004981
5 0.006618
6 0.008257
7 6.0089918
8 6.011537
9 0.013172
10 6.014785
11 6.016450
12 0.618088
13 6.019726
14 6.621366

Source Destination Pratocol
192.168.8.201 192.168.8.200 upp
192.168.8.201 192.168.8.200 uop
192,168.8.201 192,168.8.200 uop
192.168.8.201 192.168.8.200 upp
192.168.8.201 192.168.8.200 upp
192.168.8.201 192,168.8.200 uop
192.168.8.201 192.168.8.200 uop
192.168.8.201 192.168.8.200 upp
192.168.8.201 192.168.8.200 upp
192.168.8.201 192.168.8.200 upp
192.168.8.201 192.168.8.200 uop
192.168.8.201 192.168.8.200 upp
192.168.8.201 192.168.8.200 upp

b Frame 1 (554 bytes on wire, 554 bytes captured)
b Ethernet II, Src: MS-NLB-PhysServer-82 c6:a8:08:c9 (2:02:c6:a8:08:¢9), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
b Internet Protocol, Src: 192.168.8.201 (192.168.8.201), Dst: 192.168.8.200 (192.168.8.200)
b User Datagram Protocol, Src Port: 66000 (66060), Dst Port: 60080 (6000)

b Data (512 bytes)

Info

Source port:
Source port:
Source port:
Source port:
Source port:
Source port:
Source port:
Source port:
Source port:
Source port:
Source port:
Source port:
Source port:

60000
60000
60000
60000
60000
60008
60000
60000
60000
60000
60000
60000
60000

Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:
Destination port:

60000
60000
60000
60000
60000
60000
60000
60000
60000
60000
60000
60000
60000

Figure 5.3 Wireshark snapshot for 10 integratiotiey

5.4 DATA RATE CALCULATION:

The data that goes into one packet is as follows:

DATA
512 bytes

64 channels

= 64 bits ————
=32 bits-poll — 32 bits pol2—

The leftmost column
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The minimum integration i.e. only 1 cycle of 2"X5taken into consideration then every 0.163
millisecond (i.e. 163 microsecond) , a packet amsmitted from the X-engine. The data packet
that is sent over the 10Gbps has the following &irm

HEADER
42 bytes

DATA
512 bytes

There are two options for capturing the data packit Gulp. One option is to capture with the
header and another without header. We will be t¢aticlg the data rate for both the options:

1) Without header:

Every 163 microsecond 1 packet of 512 bytes is @enof one X-engine.

Therefore in 1 second 3.14 Mbytes are transferred.

Data Rate = 3.14 Mbytes * 8 (to convert i3 Iper second)

=25.13 Mbps.

2) With Header:

Every 163 microsecond 1 packet of 554 bytes issentdf one X-engine.
Therefore in 1 second 3.398 Mbytes are transferred.
Data Rate = 3.398 Mbytes * 8 (to convert to bis gecond)

=27.19 Mbps.
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6. Depacketization and Post-Processing

6.1 DEPACKETIZATION:

This stage further consists of two parts.

1. Converting to ASCtl The data packets captured by gulp are in binargnét.
These are converted into ASCII format. Further Rodéion 1 and Polarisation 0
data is separated.

2. Separating into 8 filesGulp captures packets that are sent over 10Gérith8
Different roach Boards are transmitting packetsraaesingle 10Gb Ethernet.
Hence these received packets have to be sepamrgpedding on the X-engine to
which has transmitted that particular packet.

6.2 POST-PROCESSING:

In post processing, the data received from alBtbéengines separately, has to be interleaved in
a particular order so as to get the entire spectfifl2 channels. Section 6.3 explains both the
Separation into 8 files and interleaving in depth.

6.3 LOGIC USED FOR SEPARATION AND INTERLEAVING:

The Packetized Beamformer design described herthadsllowing specifications:

1. Number of spectral channels: 512
2. Number of X-engines: 8
3. Number of channels processed by each X-engine: 64.

Each X-engine receives data of only those 64 cHanmbich it has programmed to process.
After processing this data, each X engine sendsa@scket which contains the channel data of
these 64 channels. These packets are sent ovegla $0GbE connection.But the channels that
each X-engine receives are not consecutive. Thejnahe following format (Table X).

Sr. No. Channelnhers for each X-engine:
X-enginel| X-engined X-engine3| X-engine4| X-engine5| X-engine6| X-engine7 | X-engined
1 0 1 2 3 4 5 6 7
2 8 9 10 11 12 13 14 15
3 16 17 18 19 20 21 22 23
63 496 497 498 499 500 501 502 503
64 504 505 506 507 508 509 510 511
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For processing the entire spectrum, we have toléstee the data of the 10GbE packets coming
from each X-engine. Interleaving is carried ouRisteps as follows.

1. The incoming data captured by gulp is separatex 8rfiles depending on the source IP
of the X-engines.

2. The spectral channels from these 8 files have tartznged serially.

These two things are achieved using the followeahhique :

1. Separating the data into 8 files (according to Xhengine): The data packets sent over
the 10Gbe connection are UDP packets. Each of thaskets contains a header of 42

bytes. This header contains the IP address ofdhes and destination in the"2#® 30"
byte respectively.

The header structure is as follows:

UDP Header format

Broadcast Address of phy. server

(6 bytes) (2 bytes)
Address of phy. server IP type Header len. ECN CE
(4 bytes) (2 bytes) (1 byte) (1 byte)

Total len.| Identification | Fragment Offset| Time to | Protocol
(2 bytes) | (2 bytes) (2 bytes) live LUDP

(1 byte) (1 byte)

Header |Source IP address | Destination IP address
Checksum (4 bytes)

(2 bytes)

Destination IP address | Source port] Destination port] Length
(2 bytes) (2 bytes) (2 bytes)  |(2 bytes)

Checksum
(2 bytes)

— ——————— 8 Bytes ———  ————

Figure 6.1 UDP Packet Header

Each of the 8 X-engines uses a different IP addi®ssthe X-engine that is sending a

particular packet can be identified on the basighef source IP present in the packet
header sent by it.
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Gulp captures the packets along with the headeutildy is developed to extract the
source IP from the header, identify it and accaylyirselect a file in which data has to be
written. This utility also converts the packet datéo GNU compatible and PMON
compatible format. Thus 8 different files each eaming data from a particular X-engine
are created at the end of this process.

2. Interleaving the 8 files to get a serial outplihen these 8 files are provided to the
interleaving code which arranges the channel dadqaemntially. Figure 6.2 illustrates how
channels from 8 different files are arranged imals file.

X1.txt X2.4xt  X3.txt X4.txt XS.txt X6.txt X7.txt
Channel 0, Channel 0, Channel 0, Channel 0, Channel Channel Channel 0
Channel 14 [NChannel 1\\ Channel 1 Channel | Channe} 1 Channge 1
Channel 2 N el 2\ Channe] 2 Channgll 2 Chafinel 2
Channel .. ’ \ \ Channel . Changel . " annel . i
Channel .. hannel | Chanfiel .. .. A Channel Channel ..
Channel .. 1annel | Chafinel .. Chanpef .. Channel ..
Channel 63 CAannel ¢ Chgnnel 63‘/ Channgf 63| |C 1181,63 Channel/63

3
\nte rlea%d F)'lé

Channel ..
Channel 51
Channel 511

Figure 6.2 Interleaving
In the figure 6.2, X1.txt contains data from X-emgil, X2.txt contains data from X-
engine 2 and so on.

A “packet count” can be an add-on to the systenwillt ensure interleaving of time
synchronized packets.

3. Ensuring time synchronized interleaviry packet counter can be transmitted along with
the channel data. This is appended to the dataepatithe packetization stage (before
sending it over the 10 GbE link). This packet ceunacts as a time stamp for
synchronization of packet transmission from diffégreX-engines. The process of
interleaving starts with checking of the packetrdeu Only the packets from different
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X-engines containing same packet counter will derieaved together. If even one X-
engine’s packet with a specific packet count isrectived, then all the packets with that
packet count from other X-engines will be discarded
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7.Packetized Beamformer Test Setu

1) DESIGN SPECIFICATIONS:

Number of Fengines:
Number of Xengines:
2) ROACH BOARDS USED:

ROACH boards used a-engine:
ROACHO040241, ROACH040242, ROACH040237, ROACHO040
ROACH boards used as-engine:
ROACHO030167, ROACH030116, ROACHO030174, ROACHO040

There are two Xengines per ROACH board. The-engines and the corresporg
ROACH boards are ementioned in the following table:

ROACH BOARD NUMBEF CORRESPONDING -ENGINES
030167 X1 and X5
030116 X2 and X6
030174 X3 and X7
040235 X2 and X8

Table (Y): ROACH board corresponding to the -engines.

(Note: Any other ROACtHboard can be used by providing the name of theett
ROACH board in the config_4ant script. Also makares in the server_f and serve

accordingly.)

3) CONNECTIONS TO THE F-ENGINE:

F-engine is given four inpui

1) Sync
2) | (Polarisation 0 inpu
3) Clock
4) Q (Polarisation 1 inpt

FPGA

Clk Q

1 PPS signal

Palarisation 0 800 Mhz sighal Polarisation 1

input signal

[ I

Roach board

input used as F-engine

Figure 7.1 Connections to F-engine.

GMRT-TIFR

Page 41




4) 10 GbE PORT CONNECTIONS OF X-ENGINE:
Every ROACH board has 4 10 GbE ports. The connestio them are as shown in the

figure7.2:
Qutput of nth Output of (n+4)th
X-engine X-engine
Port 2 Port 1
Port 3 Port 0
X-engine loopback one-to-one connection
connection with 1 F-engine
(Note: n=1,2,3,4) (bi-directional) (input)
10 Gbe ports of X-engine roach board

Figure 7.2 10GbE port connections of X-engine.

5) CONNECTIONS BETWEEN F-ENGINE AND X-ENGINE:
The connections between F-engine and X-enginesasb@vn in the following diagram:

Antenna 1
XAUT link
POL. 0 =5
- i - - (10Gbe
s F-engine 1 > X-1and X-5  gostelet——ry
roach040241 roach030167
Antenna 2
XAUT link
POL. 0 Epo
F-engine 2 :> X-2 and X-6 b
POL. 1 oy 9 élnnnGz)E <:>
roach040242 roach030116 10Gbe
Antenna 3 switch
KAUT link
POL. 0 Loy
F-engine 3 - - (10Gh
o 9 o B R =
roach040237 roach030174
Antenna 4
XAUT link
POL. 0 = :
F-engine 4 - - b
oL 1= o L X-4 and X-8 (oot k2>
roach040246 roach040235
Connections between F-engine and X-engine.

Figure 7.3 Connections between F-engine and X-engin
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6) CONNECTIONS FROM X-ENGINE TO CONTROL PC:
The connection from the X-engines to control P@&le via the 10GbE switch. The
following diagram shows these connections.

Beamformer output
from X-engine 1

Beamformer output

Beamformer output

from X-engine 2

from X-engine 3

Beamformer output
from X-engine 4

= )

)

!
|

v

!
s

il

hp

10Gbe switch

P
L/

Control PC

[

i

1C I
i

Beamformer output
from X-engine 5

Beamformer output
from X-engine 6

Beamformer output
from X-engine 7

Beamformer output
from X-engine 8

Connections from X-engines to control PC via 10Gbe switch

Figure 7.4 Connections from X-engines to controlMRkC10 GbE switch.
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8. Testing of the Designs and Results

The BEAMFORMER_INCOH subsystem was designed in MTLAB software using the
blocks of CASPER blockset and XYLINX blockset irethimulink library.

As the first step of testing, a 16 bit counter datsms given as input to the
BEAMFORMER_INCOH subsystem and the results werdiedrby matching the results with
theoreotical calculation. The simulation results atached below.

8.1 Simulation results

Test parameters for the simulation carried out:

Input: 16 bit counter.
No. of cycles for which 2715 accumulation is todaeried out: 3.

1) Input: The Figure 8.1 is the output of the 16 bit courasrgiven to the beamformer
subsystem for 3 2715 cycle. One ramp is considased28 timestamp data for all 64
channels in one sync cycle.

[
©

3
=
=

=
<<

15

Figure 8.1 Simulation: Counter input
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2) Addition of 128 timestamps from all antennas:

Polarisation 2:addition of 128 timestamps from 4 antennas

o
o

]

=

= [}
o

E

<

Figure 8.2 Simulation: Addition of 128 timestampsnh all antennas.

3) Output of 2215 accumulator block:
The accumulation takes place as follows. As ourgtlets for accumulating 3 cycles of
2715, we can see that it adds the 3 cycles of 2&48 after that it starts new
accumulation.

Polarisation 1: accumulation for 3 215 cycles

Figure 8.3: Simulation: Output of accumulator block

4) Generation of data,tx_valid and eof for 10Gbe core:
(Refer Figure 8.4)

1.The % graph shows the the ouput data after concatendliagpolarisationl and
polarization O data. Each signal corresponds tocba@nel data. They are 64 in number.
2. The 2dgraph shows the data transmission valid signal isided to Tx_valid signal
of the 10GbE NIC.

3. The 3dsignal shows the end of frame signal. After thggal goes from 1 to 0, the
10GbE NIC acknowledge it as a end of one packet
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Concatenated 64 bit data

Figure 8.4 Simulation: 10GbE signals.

8.2 Sinewave test result

1.Sine wave test 1

Input: Sine wave at frequency 187.5 MHz

Roach board usedoach030167 used as X-engine.

Expected output:

The frequency 187.5 MHz belongs to channel nurBbesf this X-engine. A peak is expected
in the output at channel number 30 .

Interpretation of the figure:

X —axis Channel number

Y-axis: Amplitude
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A peak is present at channel number 30. No whereapeak is present. This indicates that
input signal contains frequency component corregp@nto channel no.30 of this particular X-
engine.

'::-i‘.ﬂ ud

120000 1

100008 -

50000 |

Amplitude

o

| 19 X I;I. 17 3 ]--

Figure 8.5: Sine wave test result 1
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2.Sine wave test 2

Channel 8 in the 512 channel spectrum.
Frequency: 6.25 MHz
X-engine used: 1

X-engine channel no.:1

120000

50Ut U 2

100000

80000 -

40000 H

20000

Amplitude

(i] : lIEl 2‘0 ; _’:D -IID 5‘0 {:L'I 0
Channel number
Figure 8.6: Sine wave test result 2

8.3 Interleaved data from 8 X-enqines:

TEST : To check the functioning of interleaving eod
ConnectionOne to one connection between X-engine and coRttol
Input: Sine wave frequencies belonging to each X-engireregwen one by ones an input.

ProcessingData was captureskeparatelyand interleaved.
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Output:Peaks observed at the respective channel numbers.

TO00D T
“Bx_interfeavetxt ul —=

40000

30000 -

Amplitude

o 100 200 300 400 500 0

Channel number

Figure 8.7: Interleaving result for 8 separatesfile

8.4 Role played by data valid

Sine wave without Data_valid:

(Refer figure 8.8)

The input and output both were shifted.
Notice the peak in output.

Input: Frequency:156.25 MHz

Channel input: 25

Output channel:26(shifted)
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Channel NUMbe T
Figure 8.8: Sinewave Output-Data_valid not used.

Sine wave output with Data_valid:
(Refer figure 8.9)

The shifting is eliminated.
Peak at exact location.

Input Frequency:325 MHz
Channel input: 52

Output channel:52 (not shifted)
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Channel NUMDET e—
Figure 8.9: Sinewave Output: Data_valid used

8.5 Noise test results

ConnectionsAll 8 X-engines connected to control PC via 10Ghich
Input: Signal from noise generator passed through a I8 pler of 200 Mhz.

Output:GNU plot of the interleaved data from all X-engines
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T
“mokse T o | ——

!

10000 1

E g % :

Yo

o o . i i
o 100 200 300 400 500

Channel numberee/m—m—m—m—m—0————+¢ —+7=—-———r—=—)

Figure 8.10. Noise Test Result-512 channel spectrum

Comaprison: Output of packetized Correlator Ougnd packetized Beamformer for Noise test.

Packetized Correlator output: Packetized Beamformer output

Towr Spectrum at Tow Oct 22 124037 2013

oo Dot B ] —

o oo ]

‘0000

",

Amplitude
Amplitude

LI T N RN N 1| ) I N T R T T A |
recpaenay ]

Channel number Channel number

Figure 8.11 Comparison: Packetized Correlator dutfsuPacketized Beamformer output
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8.6 Improvement in sensitivity with increase in _nmber of antenna

Refer figure 8.12.

The colour code is as follows:

Pink- Noise output for input given to 1 antenna.
Blue- Noise output for input given to 2 antennas.
Green- Noise output for input given to 3 antennas.

Red- Noise output for input given to 4 antennas.

+
W12V 24T 24472 4 antenna.ta® u

WITZ+V2Z* 2432 3 antenna bt u l
‘ LSRR 2_2_antenna it Ul ——
BODO0: - ‘ | "W1+2_1_antennatat® ul
| ,
I .l. N " l l 1
T
s o I 1T IR |
| | | ‘ | i l-|" |
1 I | 0 i
WU
provey N I | ‘ | .||J r
“ A '|

oo | M ||| A |/|\

I
| F FI |||l rl Ml“”' ||| ||u~l']i | \'i | | | |
I : ' q‘Ilnu - ’”I
s | [l f ||1.r j i Mq
S =TI LS Mo
= |l ALL il
< U , | Wy | o

Channel number _———

Figure 8.12. Noise test Output for Increasing NundféAntennas.
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8.7 Pulsar test:
1.TEST:

« Date of observatiar8d" October 2013.

* Pulsar B0329+54(Period: 714.578196 msec)
* Antennas used! central square antennas used.

« Sampling clock800MHz.

+ Data acquisition5mins

* Integration time0.164 millisecond

« Beamformer Bandwidtd00 MHz

« RF Bandwidth 32 MHz

* Number of channels12

Pulsar B0329+54 : Packetized Beam Former (lA)
T T T T T T T
95 | e .
9.4 | .
g ko
g ; ; | ; ; | |
@ i i | |
=
o
a
E H H i H H i i
1 1 1 1 1 1 1
3000 3200 3400 3600 3800 4000 4200
Time (Bin No.)

Figure 8.13 PMON Profile for Pulsar B0329+54
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COMPARING PULSAR RESULT WITH THEOREOTICAL RESULT usar
B0329+54

GSB Output EPN Archive

b s, it nd nmm—————
L L i i L

e e on a0 e

Figure 8.14:GSB output:Pulsar B0329+54 Figure 8.15:EPN Archive:PulsarB0329+54

PACKETIZED BEAMFORMER OUTPUT

Pulsar B0329+54 : Packetized Beam Former (1A)

| .
ost b ]
I |
; JI \‘ ;
T R e ~‘I~ " - -
E . N
g | | | e
B T i -
: | .l
&£ |
= H / |5
S 9.2 |- o ....................... o jri ................. o .
; ; ; / ‘Eﬂ ‘l’mjl : :
o1 ki SO SOV SO | T PO URE SOPE P ]
‘ : ‘ ‘ N My ‘ ‘
‘ ‘ ‘N“'ﬂ“r"qm M ‘ ‘
o Eadk e At i e i sl S b
3000 3200 3400 3600 3800 4000 4200

Time (Bin No.)
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2.TEST : Pulsar test at 400Mhz RF Bandwidth.

« Date of observatiar27" November 2013.

* Pulsar B0329+54
* Antennas used! central square antennas used.

 Sampling clockBOOMHz.

* Integration time0.164 millisecond

 Beamformer Bandwidtrd00 MHz

* RF Bandwidth 400 MHz

* Number of channel§12

PSR B0329+54 : Packetized |A Beamformer L-Band 400 MHz RF

s ! ! ! ; ! z ! |
i Er s ...................... .................... ‘ .................... . .................... _
4.39 | ................... ................ s i " .................. o . .................... o
438 oo s P T S
z : 5 i ' ; : | i
£ i i i : i
=3 B 3T e ...+...... ........................ ........_. ................... —]
g ; ; : : | f
<
E 4.36 _— . .............. ... ...... ' ............ ; .............. _ ....... . ......... . ................ ]
D 3 1 % E ' 1 | H oy
& 435
8
P—-
4.34
4.33
4.32
4.31
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (Bin No.)

Figure 8.16 PMON Profile of Pulsar B0329+54 at 460MR.F. B.W.

This is the first detection through this desigifuit400 MHz RF in the L-Band. Local Oscillator 2450
MHz.
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9. Add-on to the Beamformer Subsystel

This section briefly explains the e-ons that have been added to the beamformer suln
separately.

9.1 Add-On:On-board integrator:

PurposeUsed for multiple sync cycle integrati

Working:

1) Accumulation is done in Dual Port RA

2) Three signals are generated: End cycle_minusdL,ayele plus 1 and er
cycle,end_cycle_minusl_e

3) Registers are used to gia continuous high signal till some desired instahese
registers are enabled and reset accordi

4) New_ acc gen:Register reset by end_cycle plusdhlerby end cycle

5) Tx_valid: Register reset by end_cycle minusl_emgble by end cycle minus Output
of this register is added with write enable whislniput to this subsyste

6) End of frame: counts 64 tx_valid and goes highten@" tx_valid.

Timing Diagram:Figure 9.1 and 9.2 illustrate the timing diagramdocumulation of 3 syn
cycles.

Sync

End_cycle -| ”

End_cycle plusl ” -|

New acc2

Figure 9.1 Ad-on: Generation of new_acc signal

New_acc signal should be high for the first syncleyf every accumulation as it is the se
signal to the MUX that selects the second inpubé&adde
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Syne

[

End_cycle minusl

[

w

o

=
-
o

2

1
write_enable(we) |_|

641 2

TR

63 64 1 2 3

AR 1]

End of cycle minusl_ext

I

Register output

1 2. 64 1 2....... 64
Tx_valid_int |_| H ’7 H |_| H
Eof int |— H

Generation of tx_valid_int and eof _int in
on board integrator block

Figure 9.2 Ad-on: Generation of Tx-valid andhé of frame

64 tx_valid should come in the last sync cycleadrg accumulation and end of frame shc

go high on every 62tx_valid.

Status Design is compiled and tested for ea-engine separately. Results are as expe

Result:Figure 9.3 show noise test results for 10 integration cycle(gyeer 100 integratio

cycle(red). The results are on

ly for -engine.

Amplitude

| 1aise_ 100 ot
| y “notse 10MLN u
il "

ul

Cllannel nuumbe;

Figure 9.3 Ad-on: Multiple Integration Result.
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9.2 Add-on:Packet counter:

PurposeTime synchronized interleaving of pack

Working: A packet count is added to the data packet dfeewalues for all 64 channels of tl
X-engine have arrived at the data input of the 10@bBlock of that particular -engine.

Data-packetlt will now be of 520 bytes as 8 byte packet deum added to the pack

DATA
512 bytes

64 channels | ————— g4 hits
-32 bits-poll — 32 bits pol2-

Packet counter

Figure 9.4 Data packet with packet cou
The UDP packet size will be 520 bytes(data)+42 ¢{yeader) i.e. 562 byt

Timing Diagram:Figure 9.5 shows the timing diagram for 10 GbE algnvhen a packet cou
is transmitted along with da

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel
Channel
Channel 62
Channel 63
Packet count

Tx-data >

Tx-valid = H __J:I___J:I____H

—
—
—
—
—

]

End of famec—>»— OO0 e
Signals to the 10GbE

Figure 9.5 Ad-on: 10 GbE signals for packet coul
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An extra tx_valid is generated for the packet cauahie and the end of frame goes high with
this extra tx_valid. In this case, 65 tx_validslwi¢ there.

Status Design checked in simulation. Size of data packecked in wireshark. It is found to be
520 bytes.
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10. Future work and recommendations

e Scale the design to 8 antennas

e Scale the design for greater number of channels

e Attempt time synchronized interleaving using paat@inter logic. Develop
Post-processing scripts for the same.

e Attempt Sync cycle integration for all 8 X-engirtegether.

e Analysis of relative improvement in SNR as a fumetiof number of
antennas.
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Appendix A
APPENDIX A-1

This is a list of the Frequencies that belong terijinel and X-engine 2.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective Xrengut of the 64 channels.

Column 3 shows the Channel number for X-enginatlobthe total 512 channels.

Column 4 shows the Frequencies accepted by X-erdginéHz.

Column 6 shows the Channel number for X-enginatdbthe total 512 channels.

Column 7 shows the Frequencies accepted by X-erZginéHz.

Channel XENGINE1 | FREQUENCY X ENGINE2 | FREQUENCY
(MHZ) (MHZ)
0 0 0.00 1 0.78125
1 8 6.25 9 7.03125
2 16 12.50 17 13.28125
3 24 18.75 25 19.53125
4 32 25.00 33 25.78125
5 40 31.25 41 32.03125
6 48 37.50 49 38.28125
7 56 43.75 57 44.53125
8 64 50.00 65 50.78125
9 72 56.25 73 57.03125
10 80 62.50 81 63.28125
11 88 68.75 89 69.53125
12 9% 75.00 97 75.78125
13 104 81.25 105 82.03125
14 112 87.50 113 88.28125
15 120 93.75 121 94.53125
16 128 100.00 129 100.78125
17 136 106.25 137 107.03125
18 144 112.50 145 113.28125
19 152 118.75 153 119.53125
20 160 125.00 161 125.78125
21 168 131.25 169 132.03125
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22 176 137.50 177 138.28125
23 184 143.75 185 144.53125
24 192 150.00 193 150.78125
25 200 156.25 201 157.03125
26 208 162.50 209 163.28125
27 216 168.75 217 169.53125
28 224 175.00 225 175.78125
29 232 181.25 233 182.03125
30 240 187.50 241 188.28125
31 248 193.75 249 194.53125
32 256 200.00 257 200.78125
33 264 206.25 265 207.03125
34 272 212.50 273 213.28125
35 280 218.75 281 219.53125
36 288 225.00 289 225.78125
37 296 231.25 297 232.03125
38 304 237.50 305 238.28125
39 312 243.75 313 244.53125
40 320 250.00 321 250.78125
41 328 256.25 329 257.03125
42 336 262.50 337 263.28125
43 344 268.75 345 269.53125
44 352 275.00 353 275.78125
45 360 281.25 361 282.03125
46 368 287.50 369 288.28125
47 376 293.75 377 294.53125
48 384 300.00 385 300.78125
49 392 306.25 393 307.03125
50 400 312.50 401 313.28125
51 408 318.75 409 319.53125
52 416 325.00 417 325.78125
53 424 331.25 425 332.03125
54 432 337.50 433 338.28125
55 440 343.75 441 344.53125
56 448 350.00 449 350.78125
57 456 356.25 457 357.03125
58 464 362.50 465 363.28125
59 472 368.75 473 369.53125
60 480 375.00 481 375.78125
61 488 381.25 489 382.03125
62 496 387.50 497 388.28125
GMRT-TIFR Page 64



63 504 393.75 505 394.53125
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APPENDIX A-2

This is a list of the Frequencies that belong terXjine 3 and X-engine 4.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective Xrengut of the 64 channels.
Column 3 shows the Channel number for X-enginat3bthe total 512 channels.
Column 4 shows the Frequencies accepted by X-e/gginé/Hz.

Column 6 shows the Channel number for X-enginatdbthe total 512 channels.

Column 7 shows the Frequencies accepted by X-edginé/Hz.

Channel X ENGINE3 | FREQUENCY X ENGINE4 | FREQUENCY
(MHZ) (MHZ)
0 2 1.5625 3 2.34375
1 10 7.8125 11 8.59375
2 18 14.0625 19 14.84375
3 26 20.3125 27 21.09375
4 34 26.5625 35 27.34375
5 42 32.8125 43 33.59375
6 50 39.0625 51 39.84375
7 58 45.3125 59 46.09375
8 66 51.5625 67 52.34375
9 74 57.8125 75 58.59375
10 82 64.0625 83 64.84375
11 90 70.3125 91 71.09375
12 98 76.5625 99 77.34375
13 106 82.8125 107 83.59375
14 114 89.0625 115 89.84375
15 122 95.3125 123 96.09375
16 130 101.5625 131 102.34375
17 138 107.8125 139 108.59375
18 146 114.0625 147 114.84375
19 154 120.3125 155 121.09375
20 162 126.5625 163 127.34375
21 170 132.8125 171 133.59375
22 178 139.0625 179 139.84375
23 186 145.3125 187 146.09375
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24 194 151.5625 195 152.34375
25 202 157.8125 203 158.59375
26 210 164.0625 211 164.84375
27 218 170.3125 219 171.09375
28 226 176.5625 227 177.34375
29 234 182.8125 235 183.59375
30 242 189.0625 243 189.84375
31 250 195.3125 251 196.09375
32 258 201.5625 259 202.34375
33 266 207.8125 267 208.59375
34 274 214.0625 275 214.84375
35 282 220.3125 283 221.09375
36 290 226.5625 291 227.34375
37 298 232.8125 299 233.59375
38 306 239.0625 307 239.84375
39 314 245.3125 315 246.09375
40 322 251.5625 323 252.34375
41 330 257.8125 331 258.59375
42 338 264.0625 339 264.84375
43 346 270.3125 347 271.09375
44 354 276.5625 355 277.34375
45 362 282.8125 363 283.59375
46 370 289.0625 371 289.84375
47 378 295.3125 379 296.09375
48 386 301.5625 387 302.34375
49 394 307.8125 395 308.59375
50 402 314.0625 403 314.84375
51 410 320.3125 411 321.09375
52 418 326.5625 419 327.34375
53 426 332.8125 427 333.59375
54 434 339.0625 435 339.84375
55 442 345.3125 443 346.09375
56 450 351.5625 451 352.34375
57 458 357.8125 459 358.59375
58 466 364.0625 467 364.84375
59 474 370.3125 475 371.09375
60 482 376.5625 483 377.34375
61 490 382.8125 491 383.59375
62 498 389.0625 499 389.84375
63 506 395.3125 507 396.09375
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APPENDIX A-3

This is a list of the Frequencies that belong terXjine 5 and X-engine 6.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective Xrengut of the 64 channels.
Column 3 shows the Channel number for X-enginat®bthe total 512 channels.
Column 4 shows the Frequencies accepted by X-efginéHz.

Column 6 shows the Channel number for X-enginat@bthe total 512 channels.

Column 7 shows the Frequencies accepted by X-ertginé/Hz.

Channel X ENGINES | FREQUENCY X ENGINE 6 | FREQUENCY
(MHZ) (MHZ)
0 4 3.125 5 3.90625
1 12 9.375 13 10.15625
2 20 15.625 21 16.40625
3 28 21.875 29 22.65625
4 36 28.125 37 28.90625
5 44 34.375 45 35.15625
6 52 40.625 53 41.40625
7 60 46.875 61 47.65625
8 68 53.125 69 53.90625
9 76 59.375 77 60.15625
10 84 65.625 85 66.40625
11 92 71.875 93 72.65625
12 100 78.125 101 78.90625
13 108 84.375 109 85.15625
14 116 90.625 117 91.40625
15 124 96.875 125 97.65625
16 132 103.125 133 103.90625
17 140 109.375 141 110.15625
18 148 115.625 149 116.40625
19 156 121.875 157 122.65625
20 164 128.125 165 128.90625
21 172 134.375 173 135.15625
22 180 140.625 181 141.40625
23 188 146.875 189 147.65625
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24 196 153.125 197 153.90625
25 204 159.375 205 160.15625
26 212 165.625 213 166.40625
27 220 171.875 221 172.65625
28 228 178.125 229 178.90625
29 236 184.375 237 185.15625
30 244 190.625 245 191.40625
31 252 196.875 253 197.65625
32 260 203.125 261 203.90625
33 268 209.375 269 210.15625
34 276 215.625 277 216.40625
35 284 221.875 285 222.65625
36 292 228.125 293 228.90625
37 300 234.375 301 235.15625
38 308 240.625 309 241.40625
39 316 246.875 317 247.65625
40 324 253.125 325 253.90625
41 332 259.375 333 260.15625
42 340 265.625 341 266.40625
43 348 271.875 349 272.65625
44 356 278.125 357 278.90625
45 364 284.375 365 285.15625
46 372 290.625 373 291.40625
47 380 296.875 381 297.65625
48 388 303.125 389 303.90625
49 396 309.375 397 310.15625
50 404 315.625 405 316.40625
51 412 321.875 413 322.65625
52 420 328.125 421 328.90625
53 428 334.375 429 335.15625
54 436 340.625 437 341.40625
55 444 346.875 445 347.65625
56 452 353.125 453 353.90625
57 460 359.375 461 360.15625
58 468 365.625 469 366.40625
59 476 371.875 477 372.65625
60 484 378.125 485 378.90625
61 492 384.375 493 385.15625
62 500 390.625 501 391.40625
63 508 396.875 509 397.65625
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APPENDIX A-4

This is a list of the Frequencies that belong terXjine 7 and X-engine 8.

Each X-engine processes 64 channels.

Column 1 shows the Channel in the respective Xrengut of the 64 channels.
Column 3 shows the Channel number for X-enginatfobthe total 512 channels.
Column 4 shows the Frequencies accepted by X-emginéHz.

Column 6 shows the Channel number for X-enginat&bthe total 512 channels.

Column 7 shows the Frequencies accepted by X-eigginé/Hz.

Channel XENGINE7 | FREQUENCY X ENGINE 8 | FREQUENCY
(MHZ) (MHZ)

0 6 4.68750 7 5.46875
1 14 10.93750 15 11.71875
2 22 17.18750 23 17.96875
3 30 23.43750 31 24.21875
4 38 29.68750 39 30.46875
5 46 35.93750 47 36.71875
6 54 42.18750 55 42.96875
7 62 48.43750 63 49.21875
8 70 54.68750 71 55.46875
9 78 60.93750 79 61.71875
10 86 67.18750 87 67.96875
11 94 73.43750 95 74.21875
12 102 79.68750 103 80.46875
13 110 85.93750 111 86.71875
14 118 92.18750 119 92.96875
15 126 98.43750 127 99.21875
16 134 104.68750 135 105.46875
17 142 110.93750 143 111.71875
18 150 117.18750 151 117.96875
19 158 123.43750 159 124.21875
20 166 129.68750 167 130.46875
21 174 135.93750 175 136.71875
22 182 142.18750 183 142.96875
23 190 148.43750 191 149.21875
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24 198 154.68750 199 155.46875
25 206 160.93750 207 161.71875
26 214 167.18750 215 167.96875
27 222 173.43750 223 174.21875
28 230 179.68750 231 180.46875
29 238 185.93750 239 186.71875
30 246 192.18750 247 192.96875
31 254 198.43750 255 199.21875
32 262 204.68750 263 205.46875
33 270 210.93750 271 211.71875
34 278 217.18750 279 217.96875
35 286 223.43750 287 224.21875
36 294 229.68750 295 230.46875
37 302 235.93750 303 236.71875
38 310 242.18750 311 242.96875
39 318 248.43750 319 249.21875
40 326 254.68750 327 255.46875
41 334 260.93750 335 261.71875
42 342 267.18750 343 267.96875
43 350 273.43750 351 274.21875
44 358 279.68750 359 280.46875
45 366 285.93750 367 286.71875
46 374 292.18750 375 292.96875
47 382 298.43750 383 299.21875
48 390 304.68750 391 305.46875
49 398 310.93750 399 311.71875
50 406 317.18750 407 317.96875
51 414 323.43750 415 324.21875
52 422 329.68750 423 330.46875
53 430 335.93750 431 336.71875
54 438 342.18750 439 342.96875
55 446 348.43750 447 349.21875
56 454 354.68750 455 355.46875
57 462 360.93750 463 361.71875
58 470 367.18750 471 367.96875
59 478 373.43750 479 374.21875
60 486 379.68750 487 380.46875
61 494 385.93750 495 386.71875
62 502 392.18750 503 392.96875
63 510 398.43750 511 399.21875
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Resource utilization of the Packetized beamformer ekign.

Design Information

Appendix B

Command Line : map -ise ../ xpsl/ise/system.ise -

-Xen

-register_duplication -0 system_map.ncd -w -pr b sy

Target Device : xc5vsx95t
Target Package : ff1136
Target Speed : -1

Mapper Version : virtex5 -- $Revision: 1.51.18.1 $
Mapped Date : Fri Nov 22 17:44:06 2013

Design Summary

Design Summary:
Number of errors: 0
Number of warnings: 3233
Slice Logic Utilization:

Number of Slice Registers: 33,922
Number used as Flip Flops: 33,916
Number used as Latch-thrus: 6

Number of Slice LUTSs: 32,610
Number used as logic: 28,309

Number using O6 output only: 22,088
Number using O5 output only: 2,898
Number using O5 and O6: 3,323
Number used as Memory: 3,957
Number used as Dual Port RAM: 544
Number using O6 output only: 346
Number using O5 and O6: 198
Number used as Shift Register: 3,413
Number using O6 output only: 3,413
Number used as exclusive route-thru: 344

Number of route-thrus: 3,461
Number using O6 output only: 3,188
Number using O5 output only: 234
Number using O5 and O6: 39

Slice Logic Distribution:

Number of occupied Slices: 12,974
Number of LUT Flip Flop pairs used: 42,584
Number with an unused Flip Flop: 8,662
Number with an unused LUT: 9,974

Number of fully used LUT-FF pairs: 23,948

Number of unique control sets:
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1,166

timing -detail -ol high

stem.ngd system.pcf

out of 58,880

out of 58,880
out of 58,880

out of 24,320

out of 14,720

out of 42,584
out of 42,584
out of 42,584

57%

55%
48%

16%

88%

20%
23%
56%



Number of slice register sites lost
to control set restrictions: 2,489

A LUT Flip Flop pair for this architecture repres

with
one Flip Flop within a slice. A control setis a
clock, reset, set, and enable signals for a regis
The Slice Logic Distribution report is not meanin
over-mapped for a non-slice resource or if Placem
OVERMAPPING of BRAM resources should be ignored i
over-mapped for a non-BRAM resource or if placeme

IO Utilization:

Number of bonded 10Bs: 188
Number of LOCed IOBs: 188
IOB Flip Flops: 176
Number of bonded IPADs: 36
Number of bonded OPADs: 32

Specific Feature Utilization:

Number of BlockRAM/FIFO: 173
Number using BlockRAM only: 173
Total primitives used:

Number of 36k BlockRAM used: 155
Number of 18k BlockRAM used: 28
Total Memory used (KB): 6,084

Number of BUFG/BUFGCTRLS: 14
Number used as BUFGs: 14

Number of IDELAYCTRLS: 2

Number of BUFDSSs: 2

Number of CRC64s: 6

Number of DCM_ADVs: 4

Number of DSP48Es: 128

Number of GTP_DUALS: 8

Number of PLL_ADVs: 2

Average Fanout of Non-Clock Nets: 3.

Peak Memory Usage: 1851 MB
Total REAL time to MAP completion: 15 mins 50 secs
Total CPU time to MAP completion: 15 mins 35 secs

Mapping completed.

out of 58,880 4%
ents one LUT paired

unique combination of
tered element.

gful if the design is

ent fails.

f the design is

nt fails.

outof 640 29%
outof 188 100%

outof 50 72%
outof 32 100%

outof 244 70%

out of 8,784 69%
outof 32 43%

outof 22 9%
out of 8 25%
outof 16 37%
outof 12 33%
outof 640 20%
out of 8 100%
out of 6 33%
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Appendix C

# This is the Initialization python script for the Packetized Beamformer
Design.

#!/usr/bin/python

import katcp, numpy, pylab, time, corr, sys

device_host ="roach030167" # This board has X- engine 1 and Xengine 5
device_hostl ="roach030116" # This board has X- engine 2 and Xengine 6
device_host2 ="roach030174" # This board has X- engine 3 and Xengine 7
device_host3 = "roach040235" # This board has X- engine 4 and Xengine 8

device_port =7147

#dest_ip =192*(2**24) + 168*(2**16) + 8*(2**8) + 2 00

dest_ip =10*(2**24) + 0*(2**16) + 0*(2**8) + 1 #Modified on 25th
Oct2013

fabric_port=60000

#source_ip= 192*(2**24) + 168*(2**16) + 8*(2**8) + 201

source_ip= 10*(2**24) + 0*(2**16) + 0*(2**8) + 13 #Modified on 25th
Oct2013

mac_base=(2<<40) + (2<<32)

# core name of upper 10Gbe

tx_core_namel = 'BEAMFORMER_INCOH1 ten_Gbe_v2'
# core name of lower 10Gbe

tx_core_name = 'BEAMFORMER_INCOH_ten_Gbe_v2'

# defining my corr for all roach Boards

my_corr =corr.katcp_wrapper.FpgaClient(device host, device_port)

my_corrl=corr.katcp_wrapper.FpgaClient(device hostl ,device_port)
my_corr2=corr.katcp_wrapper.FpgaClient(device host2 ,device_port)
my_corr3=corr.katcp_wrapper.FpgaClient(device_host3 ,device_port)
my_corrd =corr.katcp_wrapper.FpgaClient(device_host ,device_port)
my_corr5=corr.katcp_wrapper.FpgaClient(device hostl ,device_port)
my_corré=corr.katcp_wrapper.FpgaClient(device host2 ,device_port)
my_corr7=corr.katcp_wrapper.FpgaClient(device_host3 ,device_port)

print "beam former"
#checking whether all roach boards are connected

while not (my_corr.is_connected() and my_corrl.is_c onnected() and
my_corr2.is_connected() and my_corr3.is_connected() :

pass
#added these lines on 12/12/2012.
print" Successfully Connected to ROACH \n%s\t%s\t%s \t%s\n"
%(device_host,device_hostl,device_host2,device_host 3)
#writing the number of integration cycles on all ro ach boards.It should be

same for all 8 x-engines.

my_corr.write_int("no_cycle",1)
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my_corrl.write_int("no_cycle",1)
my_corr2.write_int("no_cycle",1)
my_corr3.write_int("no_cycle",1)

print"Integration time = %f"%(0.163*(10**-3)*10)
print 'Setting Destination IP on transmitter core..
#writing the destination ip in all software registe
This is for upper X-engine.
my_corr.write_int("tx_destination_ip_ps_x1",dest _ip
my_corrl.write_int("tx_destination_ip_ps_x1",dest i
my_corr2.write_int("tx_destination_ip_ps_x1",dest i
my_corr3.write_int("tx_destination_ip_ps_x1",dest i
#writing the destination ip in all software registe
This is for lower X-engine.
my_corrd.write_int("tx_destination_ip_ps_x2",dest i
my_corrb.write_int("tx_destination_ip_ps_x2",dest i
my_corr6.write_int("tx_destination_ip_ps_x2",dest i
my_corr7.write_int("tx_destination_ip_ps_x2",dest i

print "tx_destination_ip_ps=\n%i\n%i\%i\n%i\n%i\n%i
%(my_corr.read_int("tx_destination_ip_ps"),

my_corrl.read int("tx_destination_ip_ps"),
my_corr2.read_int("tx_destination_ip_ps"),
my_corr3.read_int("tx_destination_ip_ps"),
my_corrd.read_int("tx_destination_ip_ps1"),
my_corrb.read_int("tx_destination_ip_ps1"),
my_corr6.read_int("tx_destination_ip_ps1"),
my_corr7.read_int("tx_destination_ip_ps1"))

print ‘Configuring transmitter core...",
sys.stdout.flush()

my_corr.tap_start('tap0',tx_core_name,mac_base+sour

port)

my_corrl.tap_start('tap0',tx_core_name,mac_base+sou

bric_port)

my_corr2.tap_start('tap0',tx_core_name,mac_base+sou

bric_port)

my_corr3.tap_start('tap0',tx_core_name,mac_base+sou

bric_port)
#NOTE: keep the tg tap number different for ten GbE
the same ROACH board.
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rs on all roach boards.

)

p)
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rs on all roach boards.
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ce_ip,source_ip,fabric_

rce_ip+1,source_ip+1,fa
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my_corrd.tap_start('tap3',tx_core_namel,mac_base+so
abric_port)
my_corr5.tap_start('tap3',tx_core_namel,mac_base+so
abric_port)
my_corr6.tap_start('tap3',tx_core_namel,mac_base+so
abric_port)
my_corr7.tap_start('tap3',tx_core_namel,mac_base+so
abric_port)

print ‘done’

print 'Setting-up destination addresses...",
sys.stdout.flush()
my_corr.write_int("tx_destination_ip_ps_x1",dest _ip
my_corrl.write_int("tx_destination_ip_ps_x1",dest i
my_corr2.write_int("tx_destination_ip_ps_x1",dest i
my_corr3.write_int("tx_destination_ip_ps_x1",dest i

my_corrd.write_int("tx_destination_ip_ps_x2",dest i
my_corrb.write_int("tx_destination_ip_ps_x2",dest i
my_corr6.write_int("tx_destination_ip_ps_x2",dest i
my_corr7.write_int("tx_destination_ip_ps_x2",dest i

#writing the destination port in all software regis
boards. This is for upper X-engine.
my_corr.write_int('tx_destination_port_ps_x1',fabri
my_corrl.write_int('tx_destination_port_ps_x1',fabr
my_corr2.write_int('tx_destination_port_ps_x1',fabr
my_corr3.write_int('tx_destination_port_ps_x1',fabr

#writing the destination port in all software regis
boards. This is for lower X-engine.
my_corrd.write_int('tx_destination_port_ps_x2',fabr
my_corr5.write_int('tx_destination_port_ps_x2',fabr
my_corr6.write_int('tx_destination_port_ps_x2',fabr
my_corr7.write_int('tx_destination_port_ps_x2',fabr

print ‘done’

#resetting 10Gbe core of upper X-engine of all roac
my_corr.write_int("reset_gbe ps_x1",0)
my_corrl.write_int("reset_gbe ps x1",0)
my_corr2.write_int("reset_gbe ps_x1",0)
my_corr3.write_int("reset_gbe _ps_x1",0)

#resetting 10Gbe core of lower X-engine of all roac
my_corrd.write_int("reset_gbe ps_x2",0)

urce_ip+4,source_ip+4,f
urce_ip+5,source_ip+5,f
urce_ip+6,source_ip+6,f

urce_ip+7,source_ip+7,f

ters of all roach

c_port)
ic_port)
ic_port)
ic_port)

ters of all roach
ic_port)
ic_port)

ic_port)
ic_port)

h boards

h boards
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my_corrb.write_int("reset_gbe_ps_x2",0)
my_corr6.write_int("reset_gbe_ps_x2",0)
my_corr7.write_int("reset_gbe ps_x2",0)
#print "reset_gbe_ps= %i" %my_corr.read_int("reset_ gbe _ps_ x2")

my_corr.stop()

my_corrl.stop()
my_corr2.stop()
my_corr3.stop()
my_corr4d.stop()
my_corr5.stop()
my_corr6.stop()
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Appendix D

/I This C code converts the data cpatured by Gulp f
/I while running specify as following: <name of the

<pack_size> <scale> <nameof filel> <name of file2>

<name of file to store headers>

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<stdint.h>

int main(int argc,char* argv(])
{

/lunsigned char *buffer;

long Isize;

inti;

int k,I;

size_t result;
size_t scale;
size_t pack_size;

pack_size = atoi(argv[2]);// input packet size
printf("pack_size is %d\n",pack_size);

scale = atoi(argv[3]);//input scaling factor

/I create 8 new empty file with the names nls.txt n
FILE *ha = fopen("nls.txt","w");// File will conati
FILE *hal = fopen("n2s.txt","w");// File will conat
FILE *ha2 = fopen("n3s.txt","w");// File will conat
FILE *ha3 = fopen("n4s.txt","w");// File will conat
FILE *ha4 = fopen("n5s.txt","w");// File will conat
FILE *ha5 = fopen("'n6s.txt","w");// File will conat
FILE *ha6 = fopen("n7s.txt","w");// File will conat
FILE *ha7 = fopen("n8s.txt","w");// File will conat

FILE *head = fopen("nhs.txt","w");// File will cona
destination IP of all data packets received//

/lfclose(hd);

printf("File Name: %s",argv[1]);// argv[1] contains
in which gulp packets are dumped.//

FILE *file = fopen( argv[1], "r");

[* fopen returns 0, the NULL pointer, on fa

if (file==0){

fputs ("File error”,stderr);
exit (1);

}

else{

fseek (file , 0, SEEK_END);
Isize = ftell (file);

rom binary to ASCII//
gulp dumped file>
... <name of file8>

2s.txt .../

n data of X-enginel//
in data of X-engine2//
in data of X-engine3//
in data of X-engine4//
in data of X-engine5//
in data of X-engine6//
in data of X-engine7//
in data of X-engine8//

tin source and

the name of .dat file

ilure */
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rewind (file);

printf("%ld \n",Isize);
unsigned char* buffer = (unsigned char*) malloc(ls
char));

if (buffer == NULL)Y{

fputs ("Memory error",stderr);

exit (2);

}

else{
result = fread(buffer,sizeof(unsigned char),lsize,
printf("fread result %d\n" result);

for(i=0;i<Isize/pack_size;i++)

{

unsigned long int src_ip,file_select;
unsigned long int temp;

/lfollowing for separating source IP and destinatio
header.//

for(k = 26;k<27:k=k+8)
{

if (k==26){
unsigned long int src_ip= 0, des_ip=0; //
ip does not fit in 16 bit so we use long int data t

/l for source ip

temp = (unsigned long int) buffer[i*pack_si
temp = temp << 24;

src_ip += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si
temp = temp << 16;

src_ip += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si
temp =temp << §;

src_ip += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si

src_ip += (‘unsigned long int) temp;

file_select=src_ip;

/I for destination ip

temp = (unsigned long int) buffer[i*pack_si
temp = temp << 24;
des_ip += (unsigned long int) temp;

ize*sizeof(unsigned

file);

n IP from the packet

the source ip and des
ype for that.

ze +KJ;

ze +k+1];

ze +k +2];

ze+k+3j;

ze + k+4];
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temp = (unsigned long int) buffer[i*pack_si
temp = temp << 16;

des_ip += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si
temp =temp << §;

des_ip += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si

des_ip += (‘unsigned long int) temp;

/I to print to the file containing source addresses
fprintf(head,"%Ilu\t%lu\n",des_ip,src_ip);

}

for(k = 42;k<pack_size;k=k+8) //Data in gulp packet
gulp packet with header. Each data of 8 bytes(64 bi
{ /I Binary to ASCII conversion
if (k<pack_size){
unsigned long int pol0 = 0, poll = 0,temp_s
signed short int pol0_scale = 0, poll_scale

/I for polarization 0

temp = (unsigned long int) buffer[i*pack_size + K]

temp = temp << 24;

pol0 += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si

temp = temp << 16;

pol0 += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si

temp = temp << §;

pol0 += (unsigned long int) temp;

temp = (unsigned long int) buffer[i*pack_si
pol0 += (unsigned long int) temp;

if (pol0 > 2147483647)

{ pol0 = pol0 - 4294967296;

temp_short=(pol0/scale);
pol0_scale = (signed short int) temp_short;

[[for polarization 1

temp = (unsigned long int) buffer[i*pack_size + k+
temp = temp << 24;
poll += (unsigned long int) temp;
temp = (unsigned long int) buffer[i*pack_si
temp = temp << 16;
poll += (unsigned long int) temp;
temp = (unsigned long int) buffer[i*pack_si
temp =temp << §;
poll += (unsigned long int) temp;

ze + k+5];

ze + k+6];

ze + k+7];

of received packets

starts at 43rd byte
ts)

hort=0;
= 0;temp_short=0;

ze+k+1];

ze +k +2];

ze +k + 3J;

4];

ze + k+5];

ze + k+6];
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temp = (unsigned long int) buffer[i*pack_si

poll += (unsigned long int) temp;

if (poll > 2147483647)

{poll = poll - 4294967296;

}

temp_short=(poll/scale);

poll_scale = (signed short int) temp_short

/I the following section selects the output file to
written.

if(file_select == 167772173)//167772173= Souce IP o
/I Data of polarisation 1 is printed below. If data
required then repalce the command by fprintf(hal,%h
{ fprintf(ha,"%hd\n",poll_scale);}
else
if (file_select == 167772174)//167772174=S
{ fprintf(hal,"%hd\n",poll_scale);}
else
if (file_select == 167772175)//167772175=S
{ fprintf(ha2,"%hd\n",poll_scale);}
else
if (file_select == 167772176)//167772176=S
{fprintf(ha3,"%hd\n",poll_scale);}

else
if (file_select == 167772177)//167772177=S
{fprintf(ha4,"%hd\n",poll_scale);}

else
if (file_select == 167772178)//167772178=S
{fprintf(ha5,"%hd\n",poll_scale);}
else
if (file_select == 167772179)//167772179=S
{fprintf(ha6,"%hd\n",poll_scale);}
else
{fprintf(ha7,"%hd\n",poll_scale);}// print
file.//

free(buffer);

ze + k+7];

which data has to be

f X-engine 1//
of polarisation 0 is
d\n",pol0_scale);

ouce IP of X-engine 2//

ouce IP of X-engine 3//

ouce IP of X-engine 4//

ouce IP of X-engine 5//

ouce IP of X-engine 6//

ouce IP of X-engine 7//

to 8th X-engine's
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fclose(ha);
fclose(hal);
fclose(ha2);
fclose(ha3);
fclose(ha4);
fclose(hab);
fclose(ha6);
fclose(ha7);
fclose(head);
fclose(file);

return O;
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Appendix E

/I This C code will interleave all the 8 files. Eac h file belonged to one
X-engine data//

#include<stdio.h>

#include<stdlib.h>
#include<string.h>
#include<stdint.h>

int main(void)

{
FILE *in1=fopen("nls.txt", "r");//File containing d ata from X-engine 1//
FILE *in2=fopen("n2s.txt", "r");//File containing d ata from X-engine 2//
FILE *in3=fopen("n3s.txt", "r");//File containing d ata from X-engine 3//
FILE *in4=fopen("n4s.txt", "r");//File containing d ata from X-engine 4//
FILE *in5=fopen("n5s.txt", "r");//File containing d ata from X-engine 5//
FILE *in6=fopen("n6s.txt", "r");//File containing d ata from X-engine 6//
FILE *in7=fopen("n7s.txt", "r");//File containing d ata from X-engine 7//
FILE *in8=fopen("n8s.txt", "r");//File containing d ata from X-engine 8//
if ((in1 !'= NULL) && (in2 != NULL) && (in3 != NULL) && (in4 !I= NULL) &&
(in5 1= NULL) && (in6 != NULL) && (in7 != NULL) && (in8 != NULL))
/I This if loop checks that there is atleast 1 pack et data in all X-
engines.//
{

char linel[BUFSIZ];

char line2[BUFSIZ];

char line3[BUFSIZ];

char line4[BUFSIZ];

char line5[BUFSIZ];

char line6[BUFSIZ];

char line7[BUFSIZ];

char line8[BUFSIZ];

while ((fgets(linel, sizeof linel, inl) = NULL) &&
(fgets(line2, sizeof line2, in2) '= NULL) && (fgets (line3, sizeof line3,
in3) I= NULL) && (fgets(line4, sizeof line4, in4) ! = NULL) &&
(fgets(lineb, sizeof lineb, in5) '= NULL) && (fgets (lineb, sizeof line6,
in6) = NULL) && (fgets(line7, sizeof line7, in7) ! = NULL) &&

(fgets(line8, sizeof line8, in8) != NULL))
{

char *startl = linel;
char *start2 = line2;
char *start3 = line3;
char *start4 = line4;
char *start5 = line5;
char *start6 = line6;
char *start7 = line7;
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char *start8 = line8;

signed short int
field1,field2,field3,field4,field5,field6,field7 fi

intn;

while ((sscanf(startl, "%hd
&& (sscanf(start2, "%hd%n", &field2, &n) == 1) && (
&field3, &n) == 1) && (sscanf(start4, "%hd%n", &fie
(sscanf(start5, "%hd%n", &field5, &n) == 1) && (ssc
&field6, &n) == 1) && (sscanf(start7, "%hd%n", &fie
(sscanf(start8, "%hd%n", &field8, &n) == 1))

{ [Il'interleaving done
channels one below the other in proper order//

printf("%hd\n", fi eldl);
startl +=n;
printf("%hd\n", fie 1d2);
start2 +=n;
printf("%hd\n", fie 1d3);
start3 +=n;
printf("%hd\n", fie [d4);
start4 +=n;
printf("%hd\n", fie ld5);
startb +=n;
printf("%hd\n", fi eld6);
starté +=n;
printf("%hd\n", fie 1d7);
start7 +=n;
printf("%hd", fiel ds8);
start8 +=n;
}

}

fclose(inl);

fclose(in2);

fclose(in3);

fclose(in4);

fclose(in5);

fclose(in6);

fclose(in7);

fclose(in8);

fclose(inter_bin);
}
return O;
}
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here by printing



Appendix F

/I This C code will convert ASCII interleaved file into Pmon compatible
format. Pmon compatible format is 16 bit signed bin aryll

#include<stdio.h>

#include<stdlib.h>
#include<string.h>
#include<stdint.h>

int main(void)

FILE *rp=fopen("tstl.txt", "r");// give the name of the File that contains
interleaved ASCII data
FILE *wp=fopen("tst7.raw", "w");//give the name of the File that will

contain interleaved binary data
if ((rp '= NULL))

char linel[BUFSIZ];
while (fgets(linel, sizeof linel, rp) != NU LL)

char *startl = linel;
signed short int field1;

int n;
while ((sscanf(startl, "%hd%n", &f ield1, &n) == 1))
{
fwrite(&field1,sizeof(field 1),1,wp); // fwrite
writes binary
startl +=n;
}
fclose(rp);
}
return O;
}
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